Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Int J Biol Macromol ; 249: 126136, 2023 Sep 30.
Artigo em Inglês | MEDLINE | ID: mdl-37543262

RESUMO

This study focuses on the preparation of an activated clay/chitosan/ZnO bio-composite using solvent casting method. Clay was activated through microwave radiation using 1 M H2SO4 at a minimum liquid to solid ratio (L/S). Chitosan was extracted from waste prawn shell and ZnO nanoparticles (ZnO-NPs) were synthesized from zinc acetate di-hydrate (Zn (CH3CO2)2·2H2O) using the sol-gel method. The produced bio-composite were characterized using FT-IR, TGA, XRD and SEM. Response surface methodology (RSM) was used for experimental design to find out the optimum conditions, e.g., pH of the solution, dosage of adsorbent and contact time for the removal of methylene blue (MB) and Cr (VI) using MINITAB 18.1 software. The optimum conditions obtained for the highest removal of MB were pH 9.57, dosage 55.44 mg and contact time 114.09 min. Similarly, for the highest removal of Cr (VI) the optimum conditions were pH 3.75, dosage 67.42 mg and contact time 111.27 min. Applying these optimum conditions, the highest removal efficiency for MB and Cr (VI) was obtained at 84.21 % and 82.67 % with 9.57 mg g-1 and 10.45 mg g-1 of adsorption capacity respectively. The adsorption data were studied for both Langmuir and Freundlich isotherm. The value of maximum Langmuir sorption was (qm) 17.346 mg g-1 and 17.621 mg g-1 for MB and Cr (VI) respectively.


Assuntos
Quitosana , Poluentes Químicos da Água , Purificação da Água , Óxido de Zinco , Espectroscopia de Infravermelho com Transformada de Fourier , Quitosana/química , Argila , Óxido de Zinco/química , Poluentes Químicos da Água/química , Purificação da Água/métodos , Adsorção , Azul de Metileno/química , Cinética , Concentração de Íons de Hidrogênio
2.
Materials (Basel) ; 16(10)2023 May 12.
Artigo em Inglês | MEDLINE | ID: mdl-37241318

RESUMO

This study describes the fabrication of nanocomposites using electrospinning technique from poly lactic acid (PLA) and nano-hydroxyapatite (n-HAp). The prepared electrospun PLA-nHAP nanocomposite is intended to be used for drug delivery application. A hydrogen bond in between nHAp and PLA was confirmed by Fourier transform infrared (FT-IR) spectroscopy. Degradation study of the prepared electrospun PLA-nHAp nanocomposite was conducted for 30 days both in phosphate buffer solution (PBS) of pH 7.4 and deionized water. The degradation of the nanocomposite occurred faster in PBS in comparison to water. Cytotoxicity analysis was conducted on both Vero cells and BHK-21 cells and the survival percentage of both cells was found to be more than 95%, which indicates that the prepared nanocomposite is non-toxic and biocompatible. Gentamicin was loaded in the nanocomposite via an encapsulation process and the in vitro drug delivery process was investigated in phosphate buffer solution at different pHs. An initial burst release of the drug was observed from the nanocomposite after 1 to 2 weeks for all pH media. After that, a sustained drug release behavior was observed for the nanocomposite for 8 weeks with a release of 80%, 70% and 50% at pHs 5.5, 6.0 and 7.4, respectively. It can be suggested that the electrospun PLA-nHAp nanocomposite can be used as a potential antibacterial drug carrier for sustained drug release in dental and orthopedic sector.

3.
Carbohydr Polym ; 194: 328-338, 2018 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-29801846

RESUMO

Transparent and flexible nanocomposite films with a range of Agarose to Cellulose Nano-Whisker (CNW) ratios were produced using never-dried CNWs. The incorporation of never-dried CNWs within Agarose played an important role in the surface roughness (Ra 7-15 nm) and light transparency of the films (from 84 to 90%). Surface induced crystallisation of Agarose by CNWs was also found with increasing percentage of crystallinity (up to 79%) for the nanocomposite films, where CNW acted as nucleating sites. The enhanced tensile strength (ca. 30% increase) and modulus (ca. 90% increase) properties of the nanocomposite films compared to the control Agarose film indicated the effectiveness of the nanowhiskers incorporation. The storage modulus of the nanocomposite films increased also to be tripled Agarose alone as the CNWs content reached 43%. The swelling kinetics of the nanocomposites revealed that addition of CNWs reduced the long-term swelling capacity and swelling rate of the nanocomposite.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA