Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 76
Filtrar
1.
J Med Device ; 19(1): 011001, 2025 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-39464246

RESUMO

During mechanical ventilation, lung function and gas exchange in structurally heterogeneous lungs may be improved when volume oscillations at the airway opening are applied at multiple frequencies simultaneously, a technique referred to as multifrequency oscillatory ventilation (MFOV). This is in contrast to conventional high-frequency oscillatory ventilation (HFOV), for which oscillatory volumes are applied at a single frequency. In the present study, as a means of fully realizing the potential of MFOV, we designed and tested a computer-controlled hybrid oscillatory ventilator capable of generating the flows, tidal volumes, and airway pressures required for MFOV, HFOV, conventional mechanical ventilation (CMV), as well as oscillometric measurements of respiratory impedance. The device employs an iterative spectral feedback controller to generate a wide range of oscillatory waveforms. The performance of the device meets that of commercial mechanical ventilators in volume-controlled mode. Oscillatory modes of ventilation also meet design specifications in a mechanical test lung, over frequencies from 4 to 20 Hz and mean airway pressure from 5 to 30 cmH2O. In proof-of-concept experiments, the oscillatory ventilator maintained adequate gas exchange in a porcine model of acute lung injury, using combinations of conventional and oscillatory ventilation modalities. In summary, our novel device is capable of generating a wide range of conventional and oscillatory ventilation waveforms with potential to enhance gas exchange, while simultaneously providing less injurious ventilation.

2.
Thorax ; 2024 Nov 04.
Artigo em Inglês | MEDLINE | ID: mdl-39496494

RESUMO

BACKGROUND: Pulmonary microvasculature alterations are implicated in emphysema pathogenesis, but the association between pulmonary microvascular blood volume (PMBV) and emphysema has not been directly assessed at scale, and prior studies have used non-specific measures of emphysema. METHODS: The Multi-Ethnic Study of Atherosclerosis Lung Study invited participants recruited from the community without renal impairment to undergo contrast-enhanced dual-energy CT. Pulmonary blood volume was calculated by material decomposition; PMBV was defined as blood volume in the peripheral 2 cm of the lung. Non-contrast CT was acquired to assess per cent emphysema and novel CT emphysema subtypes, which include the diffuse emphysema subtype and small-airways-related combined bronchitic-apical emphysema subtype. Generalised linear regression models included age, sex, race/ethnicity, body size, smoking, total lung volume and small airway count. RESULTS: Among 495 participants, 53% were never-smokers and the race/ethnic distribution was 35% white, 31% black, 15% Hispanic and 18% Asian. Mean PMBV was 352±120 mL; mean per cent emphysema was 4.95±4.75%. Lower PMBV was associated with greater per cent emphysema (-0.90% per 100 mL PMBV, 95% CI: -1.29 to -0.51). The association was of larger magnitude in participants with 10 or more pack-years smoking and airflow obstruction, but present among participants with no smoking history or airflow limitation, and was specific to the diffuse CT emphysema subtype (-1.48% per 100 mL PMBV, 95% CI: -2.31 to -0.55). CONCLUSION: In this community-based study, lower PMBV was associated with greater per cent emphysema, including in participants without a smoking history or airflow limitation, and was specific to the diffuse CT emphysema subtype.

3.
Crit Care ; 28(1): 329, 2024 Oct 08.
Artigo em Inglês | MEDLINE | ID: mdl-39380082

RESUMO

BACKGROUND: Airway pressure release ventilation (APRV) has been shown to be protective against atelectrauma if expirations are brief. We hypothesize that this is protective because epithelial surfaces are not given enough time to come together and adhere during expiration, thereby avoiding their highly damaging forced separation during inspiration. METHODS: We investigated this hypothesis in a porcine model of ARDS induced by Tween lavage. Animals were ventilated with APRV in 4 groups based on whether inspiratory pressure was 28 or 40 cmH2O, and whether expiration was terminated when end-expiratory flow reached either 75% (a shorter expiration) or 25% (a longer expiration) of its initial peak value. A mathematical model of respiratory system mechanics that included a volume-dependent elastance term characterized by the parameter E 2 was fit to airway pressure-flow data obtained each hour for 6 h post-Tween injury during both expiration and inspiration. We also measured respiratory system impedance between 5 and 19 Hz continuously through inspiration at the same time points from which we derived a time-course for respiratory system resistance ( R rs ). RESULTS: E 2 during both expiration and inspiration was significantly different between the two longer expiration versus the two shorter expiration groups (ANOVA, p < 0.001). We found that E 2 was most depressed during inspiration in the higher-pressure group receiving the longer expiration, suggesting that E 2 reflects a balance between strain stiffening of the lung parenchyma and ongoing recruitment as lung volume increases. We also found in this group that R rs increased progressively during the first 0.5 s of inspiration and then began to decrease again as inspiration continued, which we interpret as corresponding to the point when continuing derecruitment was reversed by progressive lung inflation. CONCLUSIONS: These findings support the hypothesis that sufficiently short expiratory durations protect against atelectrauma because they do not give derecruitment enough time to manifest. This suggests a means for the personalized adjustment of mechanical ventilation.


Assuntos
Oscilometria , Animais , Suínos , Oscilometria/métodos , Expiração/fisiologia , Atelectasia Pulmonar/prevenção & controle , Atelectasia Pulmonar/fisiopatologia , Atelectasia Pulmonar/etiologia , Síndrome do Desconforto Respiratório/fisiopatologia , Síndrome do Desconforto Respiratório/terapia , Mecânica Respiratória/fisiologia , Pressão Positiva Contínua nas Vias Aéreas/métodos , Respiração Artificial/métodos , Respiração Artificial/efeitos adversos , Modelos Animais de Doenças
4.
Sci Transl Med ; 16(760): eado1097, 2024 Aug 14.
Artigo em Inglês | MEDLINE | ID: mdl-39141699

RESUMO

Mechanical ventilation exposes the lung to injurious stresses and strains that can negatively affect clinical outcomes in acute respiratory distress syndrome or cause pulmonary complications after general anesthesia. Excess global lung strain, estimated as increased respiratory system driving pressure, is associated with mortality related to mechanical ventilation. The role of small-dimension biomechanical factors underlying this association and their spatial heterogeneity within the lung are currently unknown. Using four-dimensional computed tomography with a voxel resolution of 2.4 cubic millimeters and a multiresolution convolutional neural network for whole-lung image segmentation, we dynamically measured voxel-wise lung inflation and tidal parenchymal strains. Healthy or injured ovine lungs were evaluated as the mechanical ventilation positive end-expiratory pressure (PEEP) was titrated from 20 to 2 centimeters of water. The PEEP of minimal driving pressure (PEEPDP) optimized local lung biomechanics. We observed a greater rate of change in nonaerated lung mass with respect to PEEP below PEEPDP compared with PEEP values above this threshold. PEEPDP similarly characterized a breaking point in the relationships between PEEP and SD of local tidal parenchymal strain, the 95th percentile of local strains, and the magnitude of tidal overdistension. These findings advance the understanding of lung collapse, tidal overdistension, and strain heterogeneity as local triggers of ventilator-induced lung injury in large-animal lungs similar to those of humans and could inform the clinical management of mechanical ventilation to improve local lung biomechanics.


Assuntos
Pulmão , Respiração com Pressão Positiva , Respiração Artificial , Animais , Pulmão/fisiopatologia , Ovinos , Fenômenos Biomecânicos , Respiração Artificial/efeitos adversos , Pressão , Tomografia Computadorizada por Raios X , Volume de Ventilação Pulmonar
5.
Respir Care ; 69(8): 1011-1024, 2024 07 24.
Artigo em Inglês | MEDLINE | ID: mdl-39048146

RESUMO

Despite periodic changes in the clinical definition of ARDS, imaging of the lung remains a central component of its diagnostic identification. Several imaging modalities are available to the clinician to establish a diagnosis of the syndrome, monitor its clinical course, or assess the impact of treatment and management strategies. Each imaging modality provides unique insight into ARDS from structural and/or functional perspectives. This review will highlight several methods for lung imaging in ARDS, emphasizing basic operational and physical principles for the respiratory therapist. Advantages and disadvantages of each modality will be discussed in the context of their utility for clinical management and decision-making.


Assuntos
Pulmão , Síndrome do Desconforto Respiratório , Tomografia Computadorizada por Raios X , Humanos , Síndrome do Desconforto Respiratório/diagnóstico por imagem , Síndrome do Desconforto Respiratório/terapia , Pulmão/diagnóstico por imagem , Pulmão/fisiopatologia
6.
Respir Care ; 69(11): 1432-1443, 2024 Oct 25.
Artigo em Inglês | MEDLINE | ID: mdl-38408775

RESUMO

BACKGROUD: Lung volume measurements are important for monitoring functional aeration and recruitment and may help guide adjustments in ventilator settings. The expiratory phase of airway pressure release ventilation (APRV) may provide physiologic information about lung volume based on the expiratory flow-time slope, angle, and time to approach a no-flow state (expiratory time [TE]). We hypothesized that expiratory flow would correlate with estimated lung volume (ELV) as measured using a modified nitrogen washout/washin technique in a large-animal lung injury model. METHODS: Eight pigs (35.2 ± 1.0 kg) were mechanically ventilated using an Engström Carescape R860 on the APRV mode. All settings were held constant except the expiratory duration, which was adjusted based on the expiratory flow curve. Abdominal pressure was increased to 15 mm Hg in normal and injured lungs to replicate a combination of pulmonary and extrapulmonary lung injury. ELV was estimated using the Carescape FRC INview tool. The expiratory flow-time slope and TE were measured from the expiratory flow profile. RESULTS: Lung elastance increased with induced lung injury from 29.3 ± 7.3 cm H2O/L to 39.9 ± 15.1cm H2O/L, and chest wall elastance increased with increasing intra-abdominal pressures (IAPs) from 15.3 ± 4.1 cm H2O/L to 25.7 ± 10.0 cm H2O/L in the normal lung and 15.8 ± 6.0 cm H2O/L to 33.0 ± 6.2 cm H2O/L in the injured lung (P = .39). ELV decreased from 1.90 ± 0.83 L in the injured lung to 0.67 ± 0.10 L by increasing IAP to 15 mm Hg. This had a significant correlation with a TE decrease from 2.3 ± 0.8 s to 1.0 ± 0.1 s in the injured group with increasing insufflation pressures (ρ = 0.95) and with the expiratory flow-time slope, which increased from 0.29 ± 0.06 L/s2 to 0.63 ± 0.05 L/s2 (ρ = 0.78). CONCLUSIONS: Changes in ELV over time, and the TE and flow-time slope, could be used to demonstrate evolving lung injury during APRV. Using the slope to infer changes in functional lung volume represents a unique, reproducible, real-time, bedside technique that does not interrupt ventilation and may be used for clinical interpretation.


Assuntos
Insuflação , Lesão Pulmonar , Medidas de Volume Pulmonar , Pulmão , Respiração Artificial , Mecânica Respiratória , Animais , Suínos , Insuflação/métodos , Mecânica Respiratória/fisiologia , Lesão Pulmonar/fisiopatologia , Lesão Pulmonar/etiologia , Respiração Artificial/métodos , Pulmão/fisiopatologia , Modelos Animais de Doenças , Abdome/fisiopatologia , Volume de Ventilação Pulmonar , Expiração/fisiologia
7.
Respir Res ; 25(1): 37, 2024 Jan 18.
Artigo em Inglês | MEDLINE | ID: mdl-38238778

RESUMO

Acute respiratory distress syndrome (ARDS) alters the dynamics of lung inflation during mechanical ventilation. Repetitive alveolar collapse and expansion (RACE) predisposes the lung to ventilator-induced lung injury (VILI). Two broad approaches are currently used to minimize VILI: (1) low tidal volume (LVT) with low-moderate positive end-expiratory pressure (PEEP); and (2) open lung approach (OLA). The LVT approach attempts to protect already open lung tissue from overdistension, while simultaneously resting collapsed tissue by excluding it from the cycle of mechanical ventilation. By contrast, the OLA attempts to reinflate potentially recruitable lung, usually over a period of seconds to minutes using higher PEEP used to prevent progressive loss of end-expiratory lung volume (EELV) and RACE. However, even with these protective strategies, clinical studies have shown that ARDS-related mortality remains unacceptably high with a scarcity of effective interventions over the last two decades. One of the main limitations these varied interventions demonstrate to benefit is the observed clinical and pathologic heterogeneity in ARDS. We have developed an alternative ventilation strategy known as the Time Controlled Adaptive Ventilation (TCAV) method of applying the Airway Pressure Release Ventilation (APRV) mode, which takes advantage of the heterogeneous time- and pressure-dependent collapse and reopening of lung units. The TCAV method is a closed-loop system where the expiratory duration personalizes VT and EELV. Personalization of TCAV is informed and tuned with changes in respiratory system compliance (CRS) measured by the slope of the expiratory flow curve during passive exhalation. Two potentially beneficial features of TCAV are: (i) the expiratory duration is personalized to a given patient's lung physiology, which promotes alveolar stabilization by halting the progressive collapse of alveoli, thereby minimizing the time for the reopened lung to collapse again in the next expiration, and (ii) an extended inspiratory phase at a fixed inflation pressure after alveolar stabilization gradually reopens a small amount of tissue with each breath. Subsequently, densely collapsed regions are slowly ratcheted open over a period of hours, or even days. Thus, TCAV has the potential to minimize VILI, reducing ARDS-related morbidity and mortality.


Assuntos
Síndrome do Desconforto Respiratório , Lesão Pulmonar Induzida por Ventilação Mecânica , Humanos , Respiração Artificial/métodos , Pulmão/patologia , Alvéolos Pulmonares/patologia , Síndrome do Desconforto Respiratório/diagnóstico , Síndrome do Desconforto Respiratório/terapia , Síndrome do Desconforto Respiratório/patologia , Pressão Positiva Contínua nas Vias Aéreas/métodos , Volume de Ventilação Pulmonar , Lesão Pulmonar Induzida por Ventilação Mecânica/prevenção & controle , Lesão Pulmonar Induzida por Ventilação Mecânica/patologia
9.
Mil Med ; 188(Suppl 6): 141-148, 2023 11 08.
Artigo em Inglês | MEDLINE | ID: mdl-37948236

RESUMO

INTRODUCTION: During mechanical ventilation, cyclic recruitment and derecruitment (R/D) of alveoli result in focal points of heterogeneous stress throughout the lung. In the acutely injured lung, the rates at which alveoli can be recruited or derecruited may also be altered, requiring longer times at higher pressure levels to be recruited during inspiration, but shorter times at lower pressure levels to minimize collapse during exhalation. In this study, we used a computational model to simulate the effects of airway pressure release ventilation (APRV) on acinar recruitment, with varying inspiratory pressure levels and durations of exhalation. MATERIALS AND METHODS: The computational model consisted of a ventilator pressure source, a distensible breathing circuit, an endotracheal tube, and a porcine lung consisting of recruited and derecruited zones, as well as a transitional zone capable of intratidal R/D. Lung injury was simulated by modifying each acinus with an inflation-dependent surface tension. APRV was simulated for an inhalation duration (Thigh) of 4.0 seconds, inspiratory pressures (Phigh) of 28 and 40 cmH2O, and exhalation durations (Tlow) ranging from 0.2 to 1.5 seconds. RESULTS: Both sustained acinar recruitment and intratidal R/D within the subtree were consistently higher for Phigh of 40 cmH2O vs. 28 cmH2O, regardless of Tlow. Increasing Tlow was associated with decreasing sustained acinar recruitment, but increasing intratidal R/D, within the subtree. Increasing Tlow was associated with decreasing elastance of both the total respiratory system and transitional subtree of the model. CONCLUSIONS: Our computational model demonstrates the confounding effects of cyclic R/D, sustained recruitment, and parenchymal strain stiffening on estimates of total lung elastance during APRV. Increasing inspiratory pressures leads to not only more sustained recruitment of unstable acini but also more intratidal R/D. Our model indicates that higher inspiratory pressures should be used in conjunction with shorter exhalation times, to avoid increasing intratidal R/D.


Assuntos
Pressão Positiva Contínua nas Vias Aéreas , Pulmão , Animais , Suínos , Respiração Artificial/efeitos adversos , Complacência Pulmonar , Simulação por Computador
10.
Front Physiol ; 14: 1287416, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-38028774

RESUMO

Patients with acute respiratory distress syndrome (ARDS) have few treatment options other than supportive mechanical ventilation. The mortality associated with ARDS remains unacceptably high, and mechanical ventilation itself has the potential to increase mortality further by unintended ventilator-induced lung injury (VILI). Thus, there is motivation to improve management of ventilation in patients with ARDS. The immediate goal of mechanical ventilation in ARDS should be to prevent atelectrauma resulting from repetitive alveolar collapse and reopening. However, a long-term goal should be to re-open collapsed and edematous regions of the lung and reduce regions of high mechanical stress that lead to regional volutrauma. In this paper, we consider the proposed strategy used by the full-term newborn to open the fluid-filled lung during the initial breaths of life, by ratcheting tissues opened over a series of initial breaths with brief expirations. The newborn's cry after birth shares key similarities with the Airway Pressure Release Ventilation (APRV) modality, in which the expiratory duration is sufficiently short to minimize end-expiratory derecruitment. Using a simple computational model of the injured lung, we demonstrate that APRV can slowly open even the most recalcitrant alveoli with extended periods of high inspiratory pressure, while reducing alveolar re-collapse with brief expirations. These processes together comprise a ratchet mechanism by which the lung is progressively recruited, similar to the manner in which the newborn lung is aerated during a series of cries, albeit over longer time scales.

11.
J Clin Med ; 12(14)2023 Jul 12.
Artigo em Inglês | MEDLINE | ID: mdl-37510748

RESUMO

Acute respiratory distress syndrome (ARDS) is associated with a heterogeneous pattern of injury throughout the lung parenchyma that alters regional alveolar opening and collapse time constants. Such heterogeneity leads to atelectasis and repetitive alveolar collapse and expansion (RACE). The net effect is a progressive loss of lung volume with secondary ventilator-induced lung injury (VILI). Previous concepts of ARDS pathophysiology envisioned a two-compartment system: a small amount of normally aerated lung tissue in the non-dependent regions (termed "baby lung"); and a collapsed and edematous tissue in dependent regions. Based on such compartmentalization, two protective ventilation strategies have been developed: (1) a "protective lung approach" (PLA), designed to reduce overdistension in the remaining aerated compartment using a low tidal volume; and (2) an "open lung approach" (OLA), which first attempts to open the collapsed lung tissue over a short time frame (seconds or minutes) with an initial recruitment maneuver, and then stabilize newly recruited tissue using titrated positive end-expiratory pressure (PEEP). A more recent understanding of ARDS pathophysiology identifies regional alveolar instability and collapse (i.e., hidden micro-atelectasis) in both lung compartments as a primary VILI mechanism. Based on this understanding, we propose an alternative strategy to ventilating the injured lung, which we term a "stabilize lung approach" (SLA). The SLA is designed to immediately stabilize the lung and reduce RACE while gradually reopening collapsed tissue over hours or days. At the core of SLA is time-controlled adaptive ventilation (TCAV), a method to adjust the parameters of the airway pressure release ventilation (APRV) modality. Since the acutely injured lung at any given airway pressure requires more time for alveolar recruitment and less time for alveolar collapse, SLA adjusts inspiratory and expiratory durations and inflation pressure levels. The TCAV method SLA reverses the open first and stabilize second OLA method by: (i) immediately stabilizing lung tissue using a very brief exhalation time (≤0.5 s), so that alveoli simply do not have sufficient time to collapse. The exhalation duration is personalized and adaptive to individual respiratory mechanical properties (i.e., elastic recoil); and (ii) gradually recruiting collapsed lung tissue using an inflate and brake ratchet combined with an extended inspiratory duration (4-6 s) method. Translational animal studies, clinical statistical analysis, and case reports support the use of TCAV as an efficacious lung protective strategy.

12.
J Aerosol Med Pulm Drug Deliv ; 36(1): 20-26, 2023 02.
Artigo em Inglês | MEDLINE | ID: mdl-36594924

RESUMO

Introduction: The delivery of cell therapies may be an important frontier to treat different respiratory diseases in the near future. However, the cell size, delivery conditions, cell viability, and effect in the pulmonary function are critical factors. We performed a proof-of-concept experiment using ex vivo lungs and novel subglottic airway device that allows for selective lobar isolation and administration of drugs and biologics in liquid solution deep into the lung tissues, while simultaneously ventilating the rest of the lung lobes. Methods: We used radiolabeled cells and positron emission tomography-computed tomography (PET-CT) imaging to demonstrate the feasibility of high-yield cell delivery to a specifically targeted lobe. This study proposes an alternative delivery method of live cells labeled with radioactive isotope into the lung parenchyma and tracks the cell delivery using PET-CT imaging. The technique combines selective lobar isolation and lobar infusion to carry large particles distal to the trachea, subtending bronchial segments and reaching alveoli in targeted regions. Results: The solution with cells and carrier achieved a complete and homogeneous lobar distribution. An increase in tissue density was shown on the computed tomography (CT) scan, and the PET-CT imaging demonstrated retention of the activity at central, peripheral lung parenchyma, and pleural surface. The increase in CT density and metabolic activity of the isotope was restricted to the desired lobe only without leak to other lobes. Conclusion: The selective lobe delivery is targeted and imaging-guided by bronchoscopy and CT to a specific diseased lobe during mechanical ventilation. The feasibility of high-yield cell delivery demonstrated in this study will lead to the development of potential novel therapies that contribute to lung health.


Assuntos
Tomografia por Emissão de Pósitrons combinada à Tomografia Computadorizada , Respiração Artificial , Administração por Inalação , Pulmão/diagnóstico por imagem , Células-Tronco
13.
Circ Cardiovasc Imaging ; 15(8): e014380, 2022 08.
Artigo em Inglês | MEDLINE | ID: mdl-35938411

RESUMO

BACKGROUND: The pulmonary vasculature is essential for gas exchange and impacts both pulmonary and cardiac function. However, it is difficult to assess and its characteristics in the general population are unknown. We measured pulmonary blood volume (PBV) noninvasively using contrast enhanced, dual-energy computed tomography to evaluate its relationship to age and symptoms among older adults in the community. METHODS: The MESA (Multi-Ethnic Study of Atherosclerosis) is an ongoing community-based, multicenter cohort. All participants attending the most recent MESA exam were selected for contrast enhanced dual-energy computed tomography except those with estimated glomerular filtration rate <60 mL/min per 1.73 m2. PBV was calculated by material decomposition of dual-energy computed tomography images. Multivariable models included age, sex, race/ethnicity, education, height, weight, smoking status, pack-years, and scanner model. RESULTS: The mean age of the 727 participants was 71 (range 59-94) years, and 55% were male. The race/ethnicity distribution was 41% White, 29% Black, 17% Hispanic, and 13% Asian. The mean±SD PBV in the youngest age quintile was 547±180 versus 433±194 mL in the oldest quintile (P<0.001), with an approximately linear decrement of 50 mL per 10 years of age ([95% CI, 32-67]; P<0.001). Findings were similar with multivariable adjustment. Lower PBV was associated independently with a greater dyspnea after a 6-minute walk (P=0.04) and greater composite dyspnea symptom scores (P=0.02). Greater PBV was also associated with greater height, weight, lung volume, Hispanic race/ethnicity, and nonsmoking history. CONCLUSIONS: Pulmonary blood volume was substantially lower with advanced age and was associated independently with greater symptoms scores in the elderly.


Assuntos
Volume Sanguíneo , Pulmão , Idoso , Idoso de 80 Anos ou mais , Estudos de Coortes , Dispneia , Feminino , Humanos , Pulmão/diagnóstico por imagem , Masculino , Pessoa de Meia-Idade , Tomografia Computadorizada por Raios X/métodos
14.
Crit Care ; 26(1): 242, 2022 08 07.
Artigo em Inglês | MEDLINE | ID: mdl-35934707

RESUMO

A hallmark of ARDS is progressive shrinking of the 'baby lung,' now referred to as the ventilator-induced lung injury (VILI) 'vortex.' Reducing the risk of the VILI vortex is the goal of current ventilation strategies; unfortunately, this goal has not been achieved nor has mortality been reduced. However, the temporal aspects of a mechanical breath have not been considered. A brief expiration prevents alveolar collapse, and an extended inspiration can recruit the atelectatic lung over hours. Time-controlled adaptive ventilation (TCAV) is a novel ventilator approach to achieve these goals, since it considers many of the temporal aspects of dynamic lung mechanics.


Assuntos
Síndrome do Desconforto Respiratório , Lesão Pulmonar Induzida por Ventilação Mecânica , Humanos , Pulmão , Respiração Artificial/efeitos adversos , Fenômenos Fisiológicos Respiratórios , Lesão Pulmonar Induzida por Ventilação Mecânica/prevenção & controle
15.
J Eng Sci Med Diagn Ther ; 5(4): 040801, 2022 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-35832339

RESUMO

The mammalian lung is characterized by heterogeneity in both its structure and function, by incorporating an asymmetric branching airway tree optimized for maintenance of efficient ventilation, perfusion, and gas exchange. Despite potential benefits of naturally occurring heterogeneity in the lungs, there may also be detrimental effects arising from pathologic processes, which may result in deficiencies in gas transport and exchange. Regardless of etiology, pathologic heterogeneity results in the maldistribution of regional ventilation and perfusion, impairments in gas exchange, and increased work of breathing. In extreme situations, heterogeneity may result in respiratory failure, necessitating support with a mechanical ventilator. This review will present a summary of measurement techniques for assessing and quantifying heterogeneity in respiratory system structure and function during mechanical ventilation. These methods have been grouped according to four broad categories: (1) inverse modeling of heterogeneous mechanical function; (2) capnography and washout techniques to measure heterogeneity of gas transport; (3) measurements of heterogeneous deformation on the surface of the lung; and finally (4) imaging techniques used to observe spatially-distributed ventilation or regional deformation. Each technique varies with regard to spatial and temporal resolution, degrees of invasiveness, risks posed to patients, as well as suitability for clinical implementation. Nonetheless, each technique provides a unique perspective on the manifestations and consequences of mechanical heterogeneity in the diseased lung.

16.
Eur Respir Rev ; 31(163)2022 Mar 31.
Artigo em Inglês | MEDLINE | ID: mdl-35140105

RESUMO

Recently, "Technical standards for respiratory oscillometry" was published, which reviewed the physiological basis of oscillometric measures and detailed the technical factors related to equipment and test performance, quality assurance and reporting of results. Here we present a review of the clinical significance and applications of oscillometry. We briefly review the physiological principles of oscillometry and the basics of oscillometry interpretation, and then describe what is currently known about oscillometry in its role as a sensitive measure of airway resistance, bronchodilator responsiveness and bronchial challenge testing, and response to medical therapy, particularly in asthma and COPD. The technique may have unique advantages in situations where spirometry and other lung function tests are not suitable, such as in infants, neuromuscular disease, sleep apnoea and critical care. Other potential applications include detection of bronchiolitis obliterans, vocal cord dysfunction and the effects of environmental exposures. However, despite great promise as a useful clinical tool, we identify a number of areas in which more evidence of clinical utility is needed before oscillometry becomes routinely used for diagnosing or monitoring respiratory disease.


Assuntos
Resistência das Vias Respiratórias , Asma , Humanos , Oscilometria , Testes de Função Respiratória , Espirometria
18.
J Clin Monit Comput ; 36(5): 1461-1477, 2022 10.
Artigo em Inglês | MEDLINE | ID: mdl-34910285

RESUMO

Measurement of respiratory impedance ([Formula: see text]) in intubated patients requires accurate compensation for pressure losses across the endotracheal tube (ETT). In this study, we compared time-domain (TD), frequency-domain (FD) and combined time-/frequency-domain (FT) methods for ETT compensation. We measured total impedance ([Formula: see text]) of a test lung in series with three different ETT sizes, as well as in three intubated porcine subjects. Pressure measurement at the distal end of the ETT was used to determine the true [Formula: see text]. For TD compensation, pressure distal to the ETT was obtained based on its resistive and inertial properties, and the corresponding [Formula: see text] was estimated. For FD compensation, impedance of the isolated ETT was obtained from oscillatory flow and pressure waveforms, and then subtracted from [Formula: see text]. For TF compensation, the nonlinear resistive properties of the ETT were subtracted from the proximal pressure measurement, from which the linear resistive and inertial ETT properties were removed in the frequency-domain to obtain [Formula: see text]. The relative root mean square error between the actual and estimated [Formula: see text] ([Formula: see text]) showed that TD compensation yielded the least accurate estimates of [Formula: see text] for the in vitro experiments, with small deviations observed at higher frequencies. The FD and TF compensations yielded estimates of [Formula: see text] with similar accuracies. For the porcine subjects, no significant differences were observed in [Formula: see text] across compensation methods. FD and TF compensation of the ETT may allow for accurate oscillometric estimates of [Formula: see text] in intubated subjects, while avoiding the difficulties associated with direct tracheal pressure measurement.


Assuntos
Intubação Intratraqueal , Traqueia , Animais , Impedância Elétrica , Humanos , Oscilometria , Taxa Respiratória , Suínos
19.
Front Physiol ; 12: 707119, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34393824

RESUMO

Rationale: Intratidal changes in regional lung aeration, as assessed with dynamic four-dimensional computed tomography (CT; 4DCT), may indicate the processes of recruitment and derecruitment, thus portending atelectrauma during mechanical ventilation. In this study, we characterized the time constants associated with deaeration during the expiratory phase of pressure-controlled ventilation in pigs before and after acute lung injury using respiratory-gated 4DCT and image registration. Methods: Eleven pigs were mechanically ventilated in pressure-controlled mode under baseline conditions and following an oleic acid model of acute lung injury. Dynamic 4DCT scans were acquired without interrupting ventilation. Automated segmentation of lung parenchyma was obtained by a convolutional neural network. Respiratory structures were aligned using 4D image registration. Exponential regression was performed on the time-varying CT density in each aligned voxel during exhalation, resulting in regional estimates of intratidal aeration change and deaeration time constants. Regressions were also performed for regional and total exhaled gas volume changes. Results: Normally and poorly aerated lung regions demonstrated the largest median intratidal aeration changes during exhalation, compared to minimal changes within hyper- and non-aerated regions. Following lung injury, median time constants throughout normally aerated regions within each subject were greater than respective values for poorly aerated regions. However, parametric response mapping revealed an association between larger intratidal aeration changes and slower time constants. Lower aeration and faster time constants were observed for the dependent lung regions in the supine position. Regional gas volume changes exhibited faster time constants compared to regional density time constants, as well as better correspondence to total exhaled volume time constants. Conclusion: Mechanical time constants based on exhaled gas volume underestimate regional aeration time constants. After lung injury, poorly aerated regions experience larger intratidal changes in aeration over shorter time scales compared to normally aerated regions. However, the largest intratidal aeration changes occur over the longest time scales within poorly aerated regions. These dynamic 4DCT imaging data provide supporting evidence for the susceptibility of poorly aerated regions to ventilator-induced lung injury, and for the functional benefits of short exhalation times during mechanical ventilation of injured lungs.

20.
J Appl Physiol (1985) ; 131(2): 454-463, 2021 08 01.
Artigo em Inglês | MEDLINE | ID: mdl-34166081

RESUMO

This study reports systematic longitudinal pathophysiology of lung parenchymal and vascular effects of asymptomatic COVID-19 pneumonia in a young, healthy never-smoking male. Inspiratory and expiratory noncontrast along with contrast dual-energy computed tomography (DECT) scans of the chest were performed at baseline on the day of acute COVID-19 diagnosis (day 0), and across a 90-day period. Despite normal vital signs and pulmonary function tests on the day of diagnosis, the CT scans and corresponding quantification metrics detected abnormalities in parenchymal expansion based on image registration, ground-glass (GGO) texture (inflammation) as well as DECT-derived pulmonary blood volume (PBV). Follow-up scans on day 30 showed improvement in the lung parenchymal mechanics as well as reduced GGO and improved PBV distribution. Improvements in lung PBV continued until day 90. However, the heterogeneity of parenchymal mechanics and texture-derived GGO increased on days 60 and 90. We highlight that even asymptomatic COVID-19 infection with unremarkable vital signs and pulmonary function tests can have measurable effects on lung parenchymal mechanics and vascular pathophysiology, which may follow apparently different clinical courses. For this asymptomatic subject, post COVID-19 regional mechanics demonstrated persistent increased heterogeneity concomitant with return of elevated GGOs, despite early improvements in vascular derangement.NEW & NOTEWORTHY We characterized the temporal changes of lung parenchyma and microvascular pathophysiology from COVID-19 infection in an asymptomatic young, healthy nonsmoking male using dual-energy CT. Lung parenchymal mechanics and microvascular disease followed different clinical courses. Heterogeneous perfused blood volume became more uniform on follow-up visits up to 90 days. However, post COVID-19 mechanical heterogeneity of the lung parenchyma increased after apparent improvements in vascular abnormalities, even with normal spirometric indices.


Assuntos
COVID-19 , Pneumonia , Teste para COVID-19 , Humanos , Pulmão/diagnóstico por imagem , Masculino , Estudos Retrospectivos , SARS-CoV-2 , Tomografia Computadorizada por Raios X
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA