Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
FASEB Bioadv ; 3(12): 971-997, 2021 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-34938960

RESUMO

Butyrophilin 1A1 (BTN1A1) is implicated in the secretion of lipid droplets from mammary epithelial cells as a membrane receptor, which forms a secretion complex with the redox enzyme, xanthine oxidoreductase (XDH). The first evidence that BTN1A1 functions in this process was the generation of Btn1a1 -/- mouse lines, in which lipid secretion was disrupted and large unstable droplets were released into alveolar spaces with fragmented surface membranes. We have revisited one of these mutant mouse lines using RNAseq and proteomic analysis to assess the consequences of ablating the Btn1a1 gene on the expression of other genes and proteins. Disruption of intact Btn1a1 protein expression led to a large build-up of Xdh in the cytoplasm, induction of acute phase response genes and Lif-activation of Stat3 phosphorylation. At peak lactation, approx. 10% of the cells were dying, as assessed by TUNEL-analysis of nuclear DNA. Possible cell death pathways included expression of caspase 8 and activated caspase 3, autophagy, Slc5a8-mediated inactivation of survivin (Birc5), and pStat3-mediated lysosomal lysis, the latter of which is the principal death route in involuting wild type cells. Milk secretion was prolonged by renewal of the secretory epithelium, as evidenced by the upregulation of Ki67 in approx. 10% of cell nuclei and expression of cyclins and Fos/Jun. These data highlight the plasticity of the mammary epithelium and the importance of functional BTN1A1 expression for maintenance of terminally differentiated secretory cells and optimal milk production throughout lactation.

2.
Int J Mol Sci ; 22(24)2021 Dec 12.
Artigo em Inglês | MEDLINE | ID: mdl-34948160

RESUMO

The heart primarily uses fatty acids as energy substrates. Adipose lipolysis is a major source of fatty acids, particularly under stress conditions. In this study, we showed that mice with selective inactivation of the lipolytic coactivator comparative gene identification-58 (CGI-58) in adipose tissue (FAT-KO mice), relative to their littermate controls, had lower circulating FA levels in the fed and fasted states due to impaired adipose lipolysis. They preferentially utilized carbohydrates as energy fuels and were more insulin sensitive and glucose tolerant. Under cold stress, FAT-KO versus control mice had >10-fold increases in glucose uptake in the hearts but no increases in other tissues examined. Plasma concentrations of atrial natriuretic peptide and cardiac mRNAs for atrial and brain-type natriuretic peptides, two sensitive markers of cardiac remodeling, were also elevated. After one week of cold exposure, FAT-KO mice showed reduced cardiac expression of several mitochondrial oxidative phosphorylation proteins. After one month of cold exposure, hearts of these animals showed depressed functions, reduced SERCA2 protein, and increased proteins for MHC-ß, collagen I proteins, Glut1, Glut4 and phospho-AMPK. Thus, CGI-58-dependent adipose lipolysis critically regulates cardiac metabolism and function, especially during cold adaptation. The adipose-heart axis may be targeted for the management of cardiac dysfunction.


Assuntos
Aclimatação , Resposta ao Choque Frio , Glucose/metabolismo , Lipólise , Mitocôndrias Cardíacas/metabolismo , Miocárdio/metabolismo , Animais , Caderinas/deficiência , Caderinas/metabolismo , Glucose/genética , Camundongos , Camundongos Knockout , Mitocôndrias Cardíacas/genética
3.
Cell Metab ; 26(5): 764-777.e5, 2017 Nov 07.
Artigo em Inglês | MEDLINE | ID: mdl-28988822

RESUMO

Lipid droplet (LD) lipolysis in brown adipose tissue (BAT) is generally considered to be required for cold-induced nonshivering thermogenesis. Here, we show that mice lacking BAT Comparative Gene Identification-58 (CGI-58), a lipolytic activator essential for the stimulated LD lipolysis, have normal thermogenic capacity and are not cold sensitive. Relative to littermate controls, these animals had higher body temperatures when they were provided food during cold exposure. The increase in body temperature in the fed, cold-exposed knockout mice was associated with increased energy expenditure and with increased sympathetic innervation and browning of white adipose tissue (WAT). Mice lacking CGI-58 in both BAT and WAT were cold sensitive, but only in the fasted state. Thus, LD lipolysis in BAT is not essential for cold-induced nonshivering thermogenesis in vivo. Rather, CGI-58-dependent LD lipolysis in BAT regulates WAT thermogenesis, and our data uncover an essential role of WAT lipolysis in fueling thermogenesis during fasting.


Assuntos
1-Acilglicerol-3-Fosfato O-Aciltransferase/metabolismo , Adipócitos Marrons/metabolismo , Adipócitos Brancos/metabolismo , Lipólise/fisiologia , Termogênese/fisiologia , 1-Acilglicerol-3-Fosfato O-Aciltransferase/genética , Animais , Temperatura Corporal , Temperatura Baixa , Metabolismo Energético , Jejum , Humanos , Hipotermia Induzida , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout
4.
Endocrinology ; 156(5): 1648-58, 2015 May.
Artigo em Inglês | MEDLINE | ID: mdl-25751639

RESUMO

Intramyocellular accumulation of lipids is often associated with insulin resistance. Deficiency of comparative gene identification-58 (CGI-58) causes cytosolic deposition of triglyceride (TG)-rich lipid droplets in most cell types, including muscle due to defective TG hydrolysis. It was unclear, however, whether CGI-58 deficiency-induced lipid accumulation in muscle influences insulin sensitivity. Here we show that muscle-specific CGI-58 knockout mice relative to their controls have increased glucose tolerance and insulin sensitivity on a Western-type high-fat diet, despite TG accumulation in both heart and oxidative skeletal muscle and cholesterol deposition in heart. Although the intracardiomyocellular lipid deposition results in cardiac ventricular fibrosis and systolic dysfunction, muscle-specific CGI-58 knockout mice show increased glucose uptake in heart and soleus muscle, improved insulin signaling in insulin-sensitive tissues, and reduced plasma concentrations of glucose, insulin, and cholesterol. Hepatic contents of TG and cholesterol are also decreased in these animals. Cardiac steatosis is attributable, at least in part, to decreases in cardiac TG hydrolase activity and peroxisome proliferator-activated receptor-α/peroxisome proliferator-activated receptor-γ coactivator-1-dependent mitochondrial fatty acid oxidation. In conclusion, muscle CGI-58 deficiency causes cardiac dysfunction and fat deposition in oxidative muscles but induces a series of favorable metabolic changes in mice fed a high-fat diet.


Assuntos
1-Acilglicerol-3-Fosfato O-Aciltransferase/genética , Glucose/metabolismo , Resistência à Insulina , Gotículas Lipídicas/metabolismo , Músculo Esquelético/metabolismo , Miocárdio/metabolismo , Disfunção Ventricular Esquerda/metabolismo , Animais , Colesterol/metabolismo , Dieta Hiperlipídica , Ecocardiografia , Ácidos Graxos/metabolismo , Deleção de Genes , Lipase/metabolismo , Gotículas Lipídicas/patologia , Fígado/metabolismo , Masculino , Camundongos , Mitocôndrias/metabolismo , Músculo Esquelético/patologia , Miocárdio/patologia , PPAR alfa/metabolismo , PPAR gama/metabolismo , Coativador 1-alfa do Receptor gama Ativado por Proliferador de Peroxissomo , Fatores de Transcrição/metabolismo , Triglicerídeos/metabolismo , Disfunção Ventricular Esquerda/diagnóstico por imagem , Disfunção Ventricular Esquerda/patologia
5.
Adipocyte ; 3(4): 304-13, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-26317055

RESUMO

The objective was to determine the effect of nutritional milieu of isolated stromal vascular (SV) cells on proliferative capacity of preadipocytes, and adipogenic and lipogenic capacity in adipocytes in vitro. Proliferation of the preadipocytes increased over time with 48 and 72 h being greater than 24 h; however, preadipocytes from steers supplemented with corn (LC) had lower proliferation rates compared with those without corn grain supplementation (L) at 72 h. Adipocyte cultures isolated from LC group had higher mean diameter on d 4 and 6, and higher mean volume on d 0, 4, 6, and 12 of culture. Adipocytes from steers supplemented with corn grain (LC) had lower expression of key adipogenic genes during extended days in culture. The results show that prior nutritional treatment of the donor animal used to isolate SV cultures alters their proliferative, adipogenic, and lipogenic capacity in culture. These differences may be related to lower induction/expression of AP2 gene in the adipose cultures from corn supplemented group. Corn grain supplementation to steers grazing legumes could have stimulated more active adipogenic progenitor cells to differentiate, which would leave fewer behind in the SV pool for subsequent isolation.

6.
J Lipids ; 2013: 890343, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-23762566

RESUMO

Exogenous trans-10, cis-12-CLA (CLA) reduces lipid synthesis in murine adipose and mammary (MG) tissues. However, genomewide alterations in MG and liver (LIV) associated with dietary CLA during lactation remain unknown. We fed mice (n = 5/diet) control or control + trans-10, cis-12-CLA (37 mg/day) between d 6 and d 10 postpartum. The 35,302 annotated murine exonic evidence-based oligo (MEEBO) microarray and quantitative RT-PCR were used for transcript profiling. Milk fat concentration was 44% lower on d 10 versus d 6 due to CLA. The CLA diet resulted in differential expression of 1,496 genes. Bioinformatics analyses underscored that a major effect of CLA on MG encompassed alterations in cellular signaling pathways and phospholipid species biosynthesis. Dietary CLA induced genes related to ER stress (Xbp1), apoptosis (Bcl2), and inflammation (Orm1, Saa2, and Cp). It also induced marked inhibition of PPAR γ signaling, including downregulation of Pparg and Srebf1 and several lipogenic target genes (Scd, Fasn, and Gpam). In LIV, CLA induced hepatic steatosis probably through perturbations in the mitochondrial functions and induction of ER stress. Overall, results from this study underscored the role of PPAR γ signaling on mammary lipogenic target regulation. The proinflammatory effect due to CLA could be related to inhibition of PPAR γ signaling.

7.
J Lipid Res ; 54(8): 2109-2120, 2013 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-23733885

RESUMO

Triglyceride (TG) accumulation in hepatocytes (hepatic steatosis) preludes the development of advanced nonalcoholic fatty liver diseases (NAFLDs) such as steatohepatitis, fibrosis, and cirrhosis. Mutations in human Comparative Gene Identification-58 (CGI-58) cause cytosolic TG-rich lipid droplets to accumulate in almost all cell types including hepatocytes. However, it is unclear if CGI-58 mutation causes hepatic steatosis locally or via altering lipid metabolism in other tissues. To directly address this question, we created liver-specific CGI-58 knockout (LivKO) mice. LivKO mice on standard chow diet displayed microvesicular and macrovesicular panlobular steatosis, and progressed to advanced NAFLD stages over time, including lobular inflammation and centrilobular fibrosis. Compared with CGI-58 floxed control littermates, LivKO mice showed 8-fold and 52-fold increases in hepatic TG content, which was associated with 40% and 58% decreases in hepatic TG hydrolase activity at 16 and 42 weeks, respectively. Hepatic cholesterol also increased significantly in LivKO mice. At 42 weeks, LivKO mice showed increased hepatic oxidative stress, plasma aminotransferases, and hepatic mRNAs for genes involved in fibrosis and inflammation, such as α-smooth muscle actin, collagen type 1 α1, tumor necrosis factor α, and interleukin-1ß. In conclusion, CGI-58 deficiency in the liver directly causes not only hepatic steatosis but also steatohepatitis and fibrosis.


Assuntos
1-Acilglicerol-3-Fosfato O-Aciltransferase/metabolismo , Fígado Gorduroso/metabolismo , Cirrose Hepática/metabolismo , Fígado/metabolismo , 1-Acilglicerol-3-Fosfato O-Aciltransferase/deficiência , 1-Acilglicerol-3-Fosfato O-Aciltransferase/genética , Animais , Fígado Gorduroso/patologia , Feminino , Fígado/patologia , Cirrose Hepática/patologia , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout
8.
Traffic ; 14(9): 974-86, 2013 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-23738536

RESUMO

Milk lipid is secreted by a unique process, during which triacylglycerol droplets bud from mammary cells coated with an outer bilayer of apical membrane. In all current schemes, the integral protein butyrophilin 1A1 (BTN) is postulated to serve as a transmembrane scaffold, which interacts either with itself or with the peripheral proteins, xanthine oxidoreductase (XOR) and possibly perilipin-2 (PLIN2), to form an immobile bridging complex between the droplet and apical surface. In one such scheme, BTN on the surface of cytoplasmic lipid droplets interacts directly with BTN in the apical membrane without binding to either XOR or PLIN2. We tested these models using both biochemical and morphological approaches. BTN was concentrated in the apical membrane in all species examined and contained mature N-linked glycans. We found no evidence for the association of unprocessed BTN with intracellular lipid droplets. BTN-enhanced green fluorescent protein was highly mobile in areas of mouse milk-lipid droplets that had not undergone post-secretion changes, and endogenous mouse BTN comprised only 0.5-0.7% (w/w) of the total protein, i.e. over 50-fold less than in the milk-lipid droplets of cow and other species. These data are incompatible with models of milk-lipid secretion in which BTN is the major component of an immobile global adhesive complex and suggest that interactions between BTN and other proteins at the time of secretion are more transient than previously predicted. The high mobility of BTN in lipid droplets marks it as a potential mobile signaling molecule in milk.


Assuntos
Metabolismo dos Lipídeos , Glândulas Mamárias Animais/metabolismo , Leite/metabolismo , Animais , Butirofilinas , Bovinos , Membrana Celular/metabolismo , Feminino , Lactação , Metabolismo dos Lipídeos/fisiologia , Glicoproteínas de Membrana/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Polissacarídeos/metabolismo
9.
J Nutr ; 140(5): 919-24, 2010 May.
Artigo em Inglês | MEDLINE | ID: mdl-20220207

RESUMO

The biological activities and mechanisms of action of individual transoctadecenoic acids (trans-18:1 FA) have not been completely elucidated. We examined the effects of several individual trans-18:1 FA isomers and trans-10, cis-12 conjugated linoleic acid (CLA) on fat synthesis, and expression of lipogenic genes in mammary and liver tissue in lactating mice. From d 6 to 10 postpartum, 30 lactating C57BL/6J mice were randomly assigned to either a control (CTR) diet containing 20 g/kg oleic acid or diets in which the oleic acid was either completely replaced by partially hydrogenated vegetable oil (PHVO), trans-7 18:1 (T7), trans-9 18:1 (T9), or trans-11 18:1 (T11) or partially replaced with 6.66 g/kg trans-10, cis-12 CLA. Milk fat percentage was decreased by CLA (44%), T7 (27%), and PHVO (23%), compared with CTR. In the mammary gland, CLA decreased the expression of genes related to de novo FA synthesis, desaturation, triacylglycerol formation, and transcriptional regulation. PHVO and T7 diets decreased the expression of 1-acylglycerol-3-phosphate O-acyltransferase and thyroid hormone responsive SPOT14 homolog (THRSP) mRNA. In contrast, dietary trans FA (tFA) did not affect hepatic lipogenic gene expression. However, mice fed CLA, T7, and PHVO diets had increased liver weights due to hepatic steatosis. Trans-7 18:1 was extensively desaturated to trans-7, cis-9 CLA in mammary and liver tissues. Dietary trans-7 18:1 could lead to milk fat depression in lactating mice, possibly through its desaturation product trans-7, cis-9 CLA. Also, the differences between the effects of trans-10, cis-12 CLA and other tFA could be attributed to its effects on carbohydrate response element binding protein and PPARgamma, in addition to sterol regulatory element binding transcription factor 1c and THRSP.


Assuntos
Gorduras na Dieta/administração & dosagem , Ácidos Linoleicos Conjugados/metabolismo , Metabolismo dos Lipídeos/fisiologia , Lipogênese/genética , Glândulas Mamárias Animais/metabolismo , Leite/metabolismo , Ácidos Graxos trans/metabolismo , 1-Acilglicerol-3-Fosfato O-Aciltransferase/genética , 1-Acilglicerol-3-Fosfato O-Aciltransferase/metabolismo , Animais , Fígado Gorduroso , Feminino , Regulação da Expressão Gênica , Isomerismo , Lactação , Ácidos Linoleicos Conjugados/genética , Metabolismo dos Lipídeos/genética , Fígado/metabolismo , Camundongos , Camundongos Endogâmicos , Proteínas Nucleares/genética , Proteínas Nucleares/metabolismo , Ácido Oleico , Tamanho do Órgão , Óleos de Plantas , RNA Mensageiro/metabolismo , Distribuição Aleatória , Estereoisomerismo , Ácidos Graxos trans/genética , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA