Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Nat Commun ; 15(1): 974, 2024 Feb 06.
Artigo em Inglês | MEDLINE | ID: mdl-38321023

RESUMO

Invariant natural killer T (iNKT) cells, a unique T cell population, lend themselves for use as adoptive therapy due to diverse roles in orchestrating immune responses. Originally developed for use in cancer, agenT-797 is a donor-unrestricted allogeneic ex vivo expanded iNKT cell therapy. We conducted an open-label study in virally induced acute respiratory distress syndrome (ARDS) caused by the severe acute respiratory syndrome-2 virus (trial registration NCT04582201). Here we show that agenT-797 rescues exhausted T cells and rapidly activates both innate and adaptive immunity. In 21 ventilated patients including 5 individuals receiving veno-venous extracorporeal membrane oxygenation (VV-ECMO), there are no dose-limiting toxicities. We observe an anti-inflammatory systemic cytokine response and infused iNKT cells are persistent during follow-up, inducing only transient donor-specific antibodies. Clinical signals of associated survival and prevention of secondary infections are evident. Cellular therapy using off-the-shelf iNKT cells is safe, can be rapidly scaled and is associated with an anti-inflammatory response. The safety and therapeutic potential of iNKT cells across diseases including infections and cancer, warrants randomized-controlled trials.


Assuntos
Células T Matadoras Naturais , Neoplasias , Síndrome do Desconforto Respiratório , Humanos , Citocinas/metabolismo , Anti-Inflamatórios
2.
Front Immunol ; 12: 643771, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33968034

RESUMO

Macrophages are crucial innate immune cells that maintain tissue homeostasis and defend against pathogens; however, their infiltration into tumors has been associated with adverse outcomes. Tumor-associated macrophages (TAMs) represent a significant component of the inflammatory infiltrate in breast tumors, and extensive infiltration of TAMs has been linked to poor prognosis in breast cancer. Here, we detail how TAMs impede a productive tumor immunity cycle by limiting antigen presentation and reducing activation of cytotoxic T lymphocytes (CTLs) while simultaneously supporting tumor cell survival, angiogenesis, and metastasis. There is an urgent need to overcome TAM-mediated immune suppression for durable anti-tumor immunity in breast cancer. To date, failure to fully characterize TAM biology and classify multiple subsets has hindered advancement in therapeutic targeting. In this regard, the complexity of TAMs has recently taken center stage owing to their subset diversity and tightly regulated molecular and metabolic phenotypes. In this review, we reveal major gaps in our knowledge of the functional and phenotypic characterization of TAM subsets associated with breast cancer, before and after treatment. Future work to characterize TAM subsets, location, and crosstalk with neighboring cells will be critical to counteract TAM pro-tumor functions and to identify novel TAM-modulating strategies and combinations that are likely to enhance current therapies and overcome chemo- and immuno-therapy resistance.


Assuntos
Neoplasias da Mama/irrigação sanguínea , Neoplasias da Mama/imunologia , Tolerância Imunológica , Macrófagos/imunologia , Neovascularização Patológica/imunologia , Microambiente Tumoral/imunologia , Neoplasias da Mama/patologia , Feminino , Humanos , Macrófagos/patologia , Metástase Neoplásica , Neovascularização Patológica/patologia
3.
Mucosal Immunol ; 12(4): 1025-1037, 2019 07.
Artigo em Inglês | MEDLINE | ID: mdl-31089186

RESUMO

Acute respiratory disease caused by influenza viruses is imperfectly mitigated by annual vaccination to select strains. Development of vaccines that elicit lung-resident memory CD8+ T cells (TRM) would offer more universal protection to seasonal and emerging pandemic viruses. Understanding how lung-resident dendritic cells (DCs) regulate TRM differentiation would be an important step in this process. Here, we used CD11c-cre-Irf4f/f (KO) mice, which lack lung-resident IRF4-dependent CD11b+CD24hi DCs and show IRF4 deficiency in other lung cDC subsets, to determine if IRF4-expressing DCs regulate CD8+ memory precursor cells and TRM during influenza A virus (IAV) infection. KO mice showed defective CD8+ T-cell memory, stemming from a deficit of T regulatory cells and memory precursor cells with decreased Foxo1 expression. Transfer of wild-type CD11b+CD24hi DCs into KO mice restored CD8+ memory precursor cell numbers to wild-type levels. KO mice recovered from a primary infection harbored reduced numbers of CD8+ TRM and showed deficient expansion of IFNγ+CD8+ T cells and increased lung pathology upon challenge with heterosubtypic IAV. Thus, vaccination strategies that harness the function of IRF4-dependent DCs could promote the differentiation of CD8+ TRM during IAV infection.


Assuntos
Linfócitos T CD8-Positivos/imunologia , Linfócitos T CD8-Positivos/metabolismo , Células Dendríticas/imunologia , Células Dendríticas/metabolismo , Memória Imunológica , Vírus da Influenza A/imunologia , Fatores Reguladores de Interferon/metabolismo , Infecções por Orthomyxoviridae/imunologia , Infecções por Orthomyxoviridae/metabolismo , Animais , Citocinas/genética , Citocinas/metabolismo , Modelos Animais de Doenças , Feminino , Interações Hospedeiro-Patógeno/genética , Interações Hospedeiro-Patógeno/imunologia , Pulmão/imunologia , Pulmão/metabolismo , Pulmão/patologia , Contagem de Linfócitos , Camundongos , Camundongos Knockout , Infecções por Orthomyxoviridae/virologia , Subpopulações de Linfócitos T/imunologia , Subpopulações de Linfócitos T/metabolismo
4.
Front Immunol ; 9: 1653, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30079065

RESUMO

Sex differences in the incidence and severity of respiratory virus infection are widely documented in humans and murine models and correlate with sex biases in numbers and/or functional responses of innate immune cells in homeostasis and lung infection. Similarly, changes in sex hormone levels upon puberty, pregnancy, and menopause/aging are associated with qualitative and quantitative differences in innate immunity. Immune cells express receptors for estrogens (ERα and ERß), androgens (AR), and progesterone (PR), and experimental manipulation of sex hormone levels or receptors has revealed that sex hormone receptor activity often underlies sex differences in immune cell numbers and/or functional responses in the respiratory tract. While elegant studies have defined mechanistic roles for sex hormones and receptors in innate immune cells, much remains to be learned about the cellular and molecular mechanisms of action of ER, PR, and AR in myeloid cells and innate lymphocytes to promote the initiation and resolution of antiviral immunity in the lung. Here, we review the literature on sex differences and sex hormone regulation in innate immune cells in the lung in homeostasis and upon respiratory virus infection.

5.
Immunohorizons ; 2(2): 74-86, 2018 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-29568816

RESUMO

Humans show significant sex differences in the incidence and severity of respiratory diseases, including asthma and virus infection. Sex hormones contribute to the female sex bias in type 2 inflammation associated with respiratory diseases, consistent with recent reports that female lungs harbor greater numbers of GATA-3-dependent group 2 innate lymphoid cells (ILC2s). In this study, we determined whether sex hormone levels govern sex differences in the numbers, phenotype, and function of ILC2s in the murine lung and bone marrow (BM). Our data show that lungs of female mice harbor significantly greater ILC2 numbers in homeostasis, in part due to a major subset of ILC2s lacking killer-cell lectin like receptor G1 (KLRG1), a population largely absent in male lungs. The KLRG1- ILC2s were capable of type 2 cytokine production and increased with age after sexual maturity, suggesting that a unique functional subset exists in females. Experiments with gonadectomized mice or mice bearing either global or lymphocyte restricted estrogen receptor α (Esr1) deficiency showed that androgens rather than estrogens regulated numbers of the KLRG1- ILC2 subset and ILC2 functional capacity in the lung and BM, as well as levels of GATA-3 expression in BM ILC2s. Furthermore, the frequency of BM PLZF+ ILC precursors was higher in males and increased by excess androgens, suggesting that androgens act to inhibit the transition of ILC precursors to ILC2s. Taken together, these data show that a functional subset of KLRG1- ILC2s in females contributes to the sex bias in lung ILC2s that is observed after reproductive age.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA