Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 154
Filtrar
1.
Cell ; 2024 May 09.
Artigo em Inglês | MEDLINE | ID: mdl-38754421

RESUMO

Clinical trials have identified ARID1A mutations as enriched among patients who respond favorably to immune checkpoint blockade (ICB) in several solid tumor types independent of microsatellite instability. We show that ARID1A loss in murine models is sufficient to induce anti-tumor immune phenotypes observed in ARID1A mutant human cancers, including increased CD8+ T cell infiltration and cytolytic activity. ARID1A-deficient cancers upregulated an interferon (IFN) gene expression signature, the ARID1A-IFN signature, associated with increased R-loops and cytosolic single-stranded DNA (ssDNA). Overexpression of the R-loop resolving enzyme, RNASEH2B, or cytosolic DNase, TREX1, in ARID1A-deficient cells prevented cytosolic ssDNA accumulation and ARID1A-IFN gene upregulation. Further, the ARID1A-IFN signature and anti-tumor immunity were driven by STING-dependent type I IFN signaling, which was required for improved responsiveness of ARID1A mutant tumors to ICB treatment. These findings define a molecular mechanism underlying anti-tumor immunity in ARID1A mutant cancers.

2.
Cancer Discov ; : OF1-OF22, 2024 Jan 25.
Artigo em Inglês | MEDLINE | ID: mdl-38270272

RESUMO

The limited efficacy of currently approved immunotherapies in EGFR-driven lung adenocarcinoma (LUAD) underscores the need to better understand alternative mechanisms governing local immunosuppression to fuel novel therapies. Elevated surfactant and GM-CSF secretion from the transformed epithelium induces tumor-associated alveolar macrophage (TA-AM) proliferation, which supports tumor growth by rewiring inflammatory functions and lipid metabolism. TA-AM properties are driven by increased GM-CSF-PPARγ signaling and inhibition of airway GM-CSF or PPARγ in TA-AMs suppresses cholesterol efflux to tumor cells, which impairs EGFR phosphorylation and restrains LUAD progression. In the absence of TA-AM metabolic support, LUAD cells compensate by increasing cholesterol synthesis, and blocking PPARγ in TA-AMs simultaneous with statin therapy further suppresses tumor progression and increases proinflammatory immune responses. These results reveal new therapeutic combinations for immunotherapy-resistant EGFR-mutant LUADs and demonstrate how cancer cells can metabolically co-opt TA-AMs through GM-CSF-PPARγ signaling to provide nutrients that promote oncogenic signaling and growth. SIGNIFICANCE: Alternate strategies harnessing anticancer innate immunity are required for lung cancers with poor response rates to T cell-based immunotherapies. This study identifies a targetable, mutually supportive, metabolic relationship between macrophages and transformed epithelium, which is exploited by tumors to obtain metabolic and immunologic support to sustain proliferation and oncogenic signaling.

3.
Cancer Discov ; 2024 Jan 19.
Artigo em Inglês | MEDLINE | ID: mdl-38241033

RESUMO

The limited efficacy of currently approved immunotherapies in EGFR-driven lung adenocarcinoma (LUAD) underscores the need to better understand alternative mechanisms governing local immunosuppression to fuel novel therapies. Elevated surfactant and GM-CSF secretion from the transformed epithelium induces tumor-associated alveolar macrophage (TA-AM) proliferation which supports tumor growth by rewiring inflammatory functions and lipid metabolism. TA-AM properties are driven by increased GM-CSF-PPARγ signaling and inhibition of airway GM-CSF or PPARγ in TA-AMs suppresses cholesterol efflux to tumor cells, which impairs EGFR phosphorylation and restrains LUAD progression. In the absence of TA-AM metabolic support, LUAD cells compensate by increasing cholesterol synthesis, and blocking PPARγ in TA-AMs simultaneous with statin therapy further suppresses tumor progression and increases proinflammatory immune responses. These results reveal new therapeutic combinations for immunotherapy resistant EGFR-mutant LUADs and demonstrate how cancer cells can metabolically co-opt TA-AMs through GM-CSF-PPARγ signaling to provide nutrients that promote oncogenic signaling and growth.

4.
Mol Cancer ; 22(1): 182, 2023 11 14.
Artigo em Inglês | MEDLINE | ID: mdl-37964379

RESUMO

BACKGROUND: Stimulating inflammatory tumor associated macrophages can overcome resistance to PD-(L)1 blockade. We previously conducted a phase I trial of cabiralizumab (anti-CSF1R), sotigalimab (CD40-agonist) and nivolumab. Our current purpose was to study the activity and cellular effects of this three-drug regimen in anti-PD-1-resistant melanoma. METHODS: We employed a Simon's two-stage design and analyzed circulating immune cells from patients treated with this regimen for treatment-related changes. We assessed various dose levels of anti-CSF1R in murine melanoma models and studied the cellular and molecular effects. RESULTS: Thirteen patients were enrolled in the first stage. We observed one (7.7%) confirmed and one (7.7%) unconfirmed partial response, 5 patients had stable disease (38.5%) and 6 disease progression (42.6%). We elected not to proceed to the second stage. CyTOF analysis revealed a reduction in non-classical monocytes. Patients with prolonged stable disease or partial response who remained on study for longer had increased markers of antigen presentation after treatment compared to patients whose disease progressed rapidly. In a murine model, higher anti-CSF1R doses resulted in increased tumor growth and worse survival. Using single-cell RNA-sequencing, we identified a suppressive monocyte/macrophage population in murine tumors exposed to higher doses. CONCLUSIONS: Higher anti-CSF1R doses are inferior to lower doses in a preclinical model, inducing a suppressive macrophage population, and potentially explaining the disappointing results observed in patients. While it is impossible to directly infer human doses from murine studies, careful intra-species evaluation can provide important insight. Cabiralizumab dose optimization is necessary for this patient population with limited treatment options. TRIAL REGISTRATION: ClinicalTrials.gov Identifier: NCT03502330.


Assuntos
Anticorpos Monoclonais , Melanoma , Humanos , Animais , Camundongos , Anticorpos Monoclonais/farmacologia , Anticorpos Monoclonais/uso terapêutico , Nivolumabe/uso terapêutico , Melanoma/patologia , Receptores Proteína Tirosina Quinases
5.
Immunity ; 56(10): 2231-2253, 2023 10 10.
Artigo em Inglês | MEDLINE | ID: mdl-37820583

RESUMO

CD8+ T cells are end effectors of cancer immunity. Most forms of effective cancer immunotherapy involve CD8+ T cell effector function. Here, we review the current understanding of T cell function in cancer, focusing on key CD8+ T cell subtypes and states. We discuss factors that influence CD8+ T cell differentiation and function in cancer through a framework that incorporates the classic three-signal model and a fourth signal-metabolism-and also consider the impact of the tumor microenvironment from a T cell perspective. We argue for the notion of immunotherapies as "pro-drugs" that act to augment or modulate T cells, which ultimately serve as the drug in vivo, and for the importance of overall immune health in cancer treatment and prevention. The progress in understanding T cell function in cancer has and will continue to improve harnessing of the immune system across broader tumor types to benefit more patients.


Assuntos
Linfócitos T CD8-Positivos , Neoplasias , Humanos , Imunoterapia , Ativação Linfocitária , Microambiente Tumoral
6.
Science ; 381(6664): 1316-1323, 2023 09 22.
Artigo em Inglês | MEDLINE | ID: mdl-37733872

RESUMO

Although tumor growth requires the mitochondrial electron transport chain (ETC), the relative contribution of complex I (CI) and complex II (CII), the gatekeepers for initiating electron flow, remains unclear. In this work, we report that the loss of CII, but not that of CI, reduces melanoma tumor growth by increasing antigen presentation and T cell-mediated killing. This is driven by succinate-mediated transcriptional and epigenetic activation of major histocompatibility complex-antigen processing and presentation (MHC-APP) genes independent of interferon signaling. Furthermore, knockout of methylation-controlled J protein (MCJ), to promote electron entry preferentially through CI, provides proof of concept of ETC rewiring to achieve antitumor responses without side effects associated with an overall reduction in mitochondrial respiration in noncancer cells. Our results may hold therapeutic potential for tumors that have reduced MHC-APP expression, a common mechanism of cancer immunoevasion.


Assuntos
Antígenos de Neoplasias , Complexo II de Transporte de Elétrons , Complexo I de Transporte de Elétrons , Mitocôndrias , Neoplasias , Humanos , Apresentação de Antígeno , Antígenos de Neoplasias/imunologia , Complexo I de Transporte de Elétrons/genética , Complexo I de Transporte de Elétrons/metabolismo , Complexo II de Transporte de Elétrons/genética , Complexo II de Transporte de Elétrons/metabolismo , Elétrons , Técnicas de Inativação de Genes , Histonas/metabolismo , Proteínas de Choque Térmico HSP40/genética , Melanoma/imunologia , Melanoma/patologia , Metilação , Mitocôndrias/enzimologia , Neoplasias/imunologia , Neoplasias/patologia , Linhagem Celular Tumoral
7.
J Immunol ; 211(6): 907-916, 2023 09 15.
Artigo em Inglês | MEDLINE | ID: mdl-37669503

RESUMO

Cancer immunoprevention, the engagement of the immune system to prevent cancer, is largely overshadowed by therapeutic approaches to treating cancer after detection. Vaccines or, alternatively, the utilization of genetically engineered memory T cells could be methods of engaging and creating cancer-specific T cells with superb memory, lenient activation requirements, potent antitumor cytotoxicity, tumor surveillance, and resilience against immunosuppressive factors in the tumor microenvironment. In this review we analyze memory T cell subtypes based on their potential utility in cancer immunoprevention with regard to longevity, localization, activation requirements, and efficacy in fighting cancers. A particular focus is on how both tissue-resident memory T cells and stem memory T cells could be promising subtypes for engaging in immunoprevention.


Assuntos
Vacinas Anticâncer , Neoplasias , Humanos , Imunoterapia , Células T de Memória , Engenharia Genética , Microambiente Tumoral
8.
Nature ; 622(7982): 383-392, 2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-37731001

RESUMO

CD8+ T cells are essential components of the immune response against viral infections and tumours, and are capable of eliminating infected and cancerous cells. However, when the antigen cannot be cleared, T cells enter a state known as exhaustion1. Although it is clear that chronic antigen contributes to CD8+ T cell exhaustion, less is known about how stress responses in tissues regulate T cell function. Here we show a new link between the stress-associated catecholamines and the progression of T cell exhaustion through the ß1-adrenergic receptor ADRB1. We identify that exhausted CD8+ T cells increase ADRB1 expression and that exposure of ADRB1+ T cells to catecholamines suppresses their cytokine production and proliferation. Exhausted CD8+ T cells cluster around sympathetic nerves in an ADRB1-dependent manner. Ablation of ß1-adrenergic signalling limits the progression of T cells towards the exhausted state in chronic infection and improves effector functions when combined with immune checkpoint blockade (ICB) in melanoma. In a pancreatic cancer model resistant to ICB, ß-blockers and ICB synergize to boost CD8+ T cell responses and induce the development of tissue-resident memory-like T cells. Malignant disease is associated with increased catecholamine levels in patients2,3, and our results establish a connection between the sympathetic stress response, tissue innervation and T cell exhaustion. Here, we uncover a new mechanism by which blocking ß-adrenergic signalling in CD8+ T cells rejuvenates anti-tumour functions.


Assuntos
Linfócitos T CD8-Positivos , Catecolaminas , Receptores Adrenérgicos beta 1 , Sistema Nervoso Simpático , Exaustão das Células T , Humanos , Antígenos/imunologia , Antígenos/metabolismo , Catecolaminas/metabolismo , Linfócitos T CD8-Positivos/citologia , Linfócitos T CD8-Positivos/imunologia , Linfócitos T CD8-Positivos/metabolismo , Proliferação de Células , Inibidores de Checkpoint Imunológico/uso terapêutico , Melanoma/imunologia , Melanoma/metabolismo , Melanoma/terapia , Células T de Memória/citologia , Células T de Memória/imunologia , Neoplasias Pancreáticas/imunologia , Neoplasias Pancreáticas/metabolismo , Neoplasias Pancreáticas/terapia , Receptores Adrenérgicos beta 1/metabolismo , Sistema Nervoso Simpático/imunologia , Sistema Nervoso Simpático/fisiologia , Estresse Fisiológico
9.
Immunity ; 56(9): 2086-2104.e8, 2023 09 12.
Artigo em Inglês | MEDLINE | ID: mdl-37572655

RESUMO

The limited efficacy of immunotherapies against glioblastoma underscores the urgency of better understanding immunity in the central nervous system. We found that treatment with αCTLA-4, but not αPD-1, prolonged survival in a mouse model of mesenchymal-like glioblastoma. This effect was lost upon the depletion of CD4+ T cells but not CD8+ T cells. αCTLA-4 treatment increased frequencies of intratumoral IFNγ-producing CD4+ T cells, and IFNγ blockade negated the therapeutic impact of αCTLA-4. The anti-tumor activity of CD4+ T cells did not require tumor-intrinsic MHC-II expression but rather required conventional dendritic cells as well as MHC-II expression on microglia. CD4+ T cells interacted directly with microglia, promoting IFNγ-dependent microglia activation and phagocytosis via the AXL/MER tyrosine kinase receptors, which were necessary for tumor suppression. Thus, αCTLA-4 blockade in mesenchymal-like glioblastoma promotes a CD4+ T cell-microglia circuit wherein IFNγ triggers microglia activation and phagocytosis and microglia in turn act as antigen-presenting cells fueling the CD4+ T cell response.


Assuntos
Glioblastoma , Camundongos , Animais , Glioblastoma/tratamento farmacológico , Glioblastoma/metabolismo , Antígeno CTLA-4 , Células Th1 , Microglia , Linfócitos T CD8-Positivos , Fagocitose , Células Dendríticas , Linfócitos T CD4-Positivos
10.
Cancer Immunol Res ; 11(10): 1332-1350, 2023 10 04.
Artigo em Inglês | MEDLINE | ID: mdl-37478171

RESUMO

Checkpoint inhibitors have revolutionized cancer treatment, but resistance remains a significant clinical challenge. Myeloid cells within the tumor microenvironment can modulate checkpoint resistance by either supporting or suppressing adaptive immune responses. Using an anti-PD-1-resistant mouse melanoma model, we show that targeting the myeloid compartment via CD40 activation and CSF1R blockade in combination with anti-PD-1 results in complete tumor regression in a majority of mice. This triple therapy combination was primarily CD40 agonist-driven in the first 24 hours after therapy and showed a similar systemic cytokine profile in human patients as was seen in mice. Functional single-cell cytokine secretion profiling of dendritic cells (DC) using a novel microwell assay identified a CCL22+CCL5+ IL12-secreting DC subset as important early-stage effectors of triple therapy. CD4+ and CD8+ T cells are both critical effectors of treatment, and systems analysis of single-cell RNA sequencing data supported a role for DC-secreted IL12 in priming T-cell activation and recruitment. Finally, we showed that treatment with a novel IL12 mRNA therapeutic alone was sufficient to overcome PD-1 resistance and cause tumor regression. Overall, we conclude that combining myeloid-based innate immune activation and enhancement of adaptive immunity is a viable strategy to overcome anti-PD-1 resistance.


Assuntos
Neoplasias , Receptor de Morte Celular Programada 1 , Humanos , Camundongos , Animais , Imunoterapia , Antígenos CD40 , Linfócitos T CD8-Positivos , Citocinas/uso terapêutico , Modelos Animais de Doenças , Interleucina-12/uso terapêutico , Células Dendríticas , Microambiente Tumoral
11.
Immunity ; 56(6): 1303-1319.e5, 2023 06 13.
Artigo em Inglês | MEDLINE | ID: mdl-37315534

RESUMO

CD8+ T cells provide host protection against pathogens by differentiating into distinct effector and memory cell subsets, but how chromatin is site-specifically remodeled during their differentiation is unclear. Due to its critical role in regulating chromatin and enhancer accessibility through its nucleosome remodeling activities, we investigated the role of the canonical BAF (cBAF) chromatin remodeling complex in antiviral CD8+ T cells during infection. ARID1A, a subunit of cBAF, was recruited early after activation and established de novo open chromatin regions (OCRs) at enhancers. Arid1a deficiency impaired the opening of thousands of activation-induced enhancers, leading to loss of TF binding, dysregulated proliferation and gene expression, and failure to undergo terminal effector differentiation. Although Arid1a was dispensable for circulating memory cell formation, tissue-resident memory (Trm) formation was strongly impaired. Thus, cBAF governs the enhancer landscape of activated CD8+ T cells that orchestrates TF recruitment and activity and the acquisition of specific effector and memory differentiation states.


Assuntos
Linfócitos T CD8-Positivos , Sequências Reguladoras de Ácido Nucleico , Cromatina , Nucleossomos , Antivirais
12.
bioRxiv ; 2023 Apr 17.
Artigo em Inglês | MEDLINE | ID: mdl-37131637

RESUMO

The limited efficacy of currently approved immunotherapies in EGFR-mutant lung adenocarcinoma (LUAD) underscores the need to better understand mechanisms governing local immunosuppression. Elevated surfactant and GM-CSF secretion from the transformed epithelium induces tumor-associated alveolar macrophages (TA-AM) to proliferate and support tumor growth by rewiring inflammatory functions and lipid metabolism. TA-AM properties are driven by increased GM-CSF-PPARγ signaling and inhibition of airway GM-CSF or PPARγ in TA-AMs suppresses cholesterol efflux to tumor cells, which impairs EGFR phosphorylation and restrains LUAD progression. In the absence of TA-AM metabolic support, LUAD cells compensate by increasing cholesterol synthesis, and blocking PPARγ in TA-AMs simultaneous with statin therapy further suppresses tumor progression and increases T cell effector functions. These results reveal new therapeutic combinations for immunotherapy resistant EGFR-mutant LUADs and demonstrate how such cancer cells can metabolically co-opt TA-AMs through GM-CSF-PPARγ signaling to provide nutrients that promote oncogenic signaling and growth.

13.
Ann N Y Acad Sci ; 1523(1): 38-50, 2023 05.
Artigo em Inglês | MEDLINE | ID: mdl-36960914

RESUMO

Immunometabolism considers the relationship between metabolism and immunity. Typically, researchers focus on either the metabolic pathways within immune cells that affect their function or the impact of immune cells on systemic metabolism. A more holistic approach that considers both these viewpoints is needed. On September 5-8, 2022, experts in the field of immunometabolism met for the Keystone symposium "Immunometabolism at the Crossroads of Obesity and Cancer" to present recent research across the field of immunometabolism, with the setting of obesity and cancer as an ideal example of the complex interplay between metabolism, immunity, and cancer. Speakers highlighted new insights on the metabolic links between tumor cells and immune cells, with a focus on leveraging unique metabolic vulnerabilities of different cell types in the tumor microenvironment as therapeutic targets and demonstrated the effects of diet, the microbiome, and obesity on immune system function and cancer pathogenesis and therapy. Finally, speakers presented new technologies to interrogate the immune system and uncover novel metabolic pathways important for immunity.


Assuntos
Neoplasias , Humanos , Neoplasias/metabolismo , Sistema Imunitário , Redes e Vias Metabólicas , Obesidade/terapia , Obesidade/metabolismo , Microambiente Tumoral
14.
Cell Metab ; 35(1): 118-133.e7, 2023 01 03.
Artigo em Inglês | MEDLINE | ID: mdl-36599297

RESUMO

Immunoediting sculpts immunogenicity and thwarts host anti-tumor responses in tumor cells during tumorigenesis; however, it remains unknown whether metabolic programming of tumor cells can be guided by immunosurveillance. Here, we report that T cell-mediated immunosurveillance in early-stage tumorigenesis instructs c-Myc upregulation and metabolic reprogramming in tumor cells. This previously unexplored tumor-immune interaction is controlled by non-canonical interferon gamma (IFNγ)-STAT3 signaling and supports tumor immune evasion. Our findings uncover that immunoediting instructs deregulated bioenergetic programs in tumor cells to empower them to disarm the T cell-mediated immunosurveillance by imposing metabolic tug-of-war between tumor and infiltrating T cells and forming the suppressive tumor microenvironment.


Assuntos
Evasão da Resposta Imune , Neoplasias , Humanos , Neoplasias/patologia , Interferon gama/metabolismo , Linfócitos T/metabolismo , Carcinogênese , Transformação Celular Neoplásica , Microambiente Tumoral
15.
bioRxiv ; 2023 Dec 05.
Artigo em Inglês | MEDLINE | ID: mdl-36711632

RESUMO

The same types of cells can assume diverse states with varying functionalities. Effective cell therapy can be achieved by specifically driving a desirable cell state, which requires the elucidation of key transcription factors (TFs). Here, we integrated epigenomic and transcriptomic data at the systems level to identify TFs that define different CD8 + T cell states in an unbiased manner. These TF profiles can be used for cell state programming that aims to maximize the therapeutic potential of T cells. For example, T cells can be programmed to avoid a terminal exhaustion state (Tex Term ), a dysfunctional T cell state that is often found in tumors or chronic infections. However, Tex Term exhibits high similarity with the beneficial tissue-resident memory T states (T RM ) in terms of their locations and transcription profiles. Our bioinformatic analysis predicted Zscan20 , a novel TF, to be uniquely active in Tex Term . Consistently, Zscan20 knock-out thwarted the differentiation of Tex Term in vivo , but not that of T RM . Furthermore, perturbation of Zscan20 programs T cells into an effector-like state that confers superior tumor and virus control and synergizes with immune checkpoint therapy. We also identified Jdp2 and Nfil3 as powerful Tex Term drivers. In short, our multiomics-based approach discovered novel TFs that enhance anti-tumor immunity, and enable highly effective cell state programming. One sentence summary: Multiomics atlas enables the systematic identification of cell-state specifying transcription factors for therapeutic cell state programming.

16.
J Exp Med ; 220(1)2023 01 02.
Artigo em Inglês | MEDLINE | ID: mdl-36315049

RESUMO

Although recent evidence demonstrates heterogeneity among CD8+ T cells during chronic infection, developmental relationships and mechanisms underlying their fate decisions remain incompletely understood. Using single-cell RNA and TCR sequencing, we traced the clonal expansion and differentiation of CD8+ T cells during chronic LCMV infection. We identified immense clonal and phenotypic diversity, including a subset termed intermediate cells. Trajectory analyses and infection models showed intermediate cells arise from progenitor cells before bifurcating into terminal effector and exhausted subsets. Genetic ablation experiments identified that type I IFN drives exhaustion through an IRF7-dependent mechanism, possibly through an IFN-stimulated subset bridging progenitor and exhausted cells. Conversely, Zeb2 was critical for generating effector cells. Intriguingly, some T cell clones exhibited lineage bias. Mechanistically, we identified that TCR avidity correlates with an exhausted fate, whereas SHP-1 selectively restricts low-avidity effector cell accumulation. Thus, our work elucidates novel mechanisms underlying CD8+ T cell fate determination during persistent infection and suggests two potential pathways leading to exhaustion.


Assuntos
Linfócitos T CD8-Positivos , Infecção Persistente , Humanos , Linfócitos T CD8-Positivos/metabolismo , Células Cultivadas , Diferenciação Celular , Receptores de Antígenos de Linfócitos T/metabolismo
17.
Yale J Biol Med ; 96(4): 467-473, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-38161581

RESUMO

T cells undergo extensive chromatin remodeling over several days following stimulation through the T cell receptor. However, the kinetics and gene loci targeted by early remodeling events within the first 24 hours of T cell priming to orchestrate effector differentiation have not been well described. We identified that chromatin accessibility is rapidly and extensively remodeled within 1 hour of stimulation of naïve CD8+ T cells, leading to increased global chromatin accessibility at many effector T cell-associated genes that are enriched for AP-1, early growth response (EGR), and nuclear factor of activated T cells (NFAT) binding sites, but this short duration of stimulation is insufficient for commitment to clonal expansion in vivo. Sustained 24-hour stimulation led to further chromatin remodeling and was sufficient to enable clonal expansion. These data suggest that the duration of antigen receptor signaling is intimately coupled to chromatin remodeling and activation of genes involved in effector cell differentiation and highlight a potential mechanism that helps CD8+ T cells discriminate between foreign- and self-antigens.


Assuntos
Linfócitos T CD8-Positivos , Montagem e Desmontagem da Cromatina , Humanos , Linfócitos T CD8-Positivos/metabolismo , Diferenciação Celular , Transdução de Sinais , Cromatina/metabolismo
18.
Cell ; 185(21): 4038-4038.e1, 2022 10 13.
Artigo em Inglês | MEDLINE | ID: mdl-36240741

RESUMO

In the tumor microenvironment, immune cells and tumor cells interact in a process called cancer immunoediting, giving rise to changes in gene expression, metabolism, mutational burden, and cellularity in the tumor. This SnapShot compares endogenous versus therapy-induced cancer immunoediting and outlines the molecular and cellular characteristics of interactions that result in complete tumor regression versus tumor escape and progression. To view this SnapShot, open or download the PDF.


Assuntos
Neoplasias/imunologia , Microambiente Tumoral , Humanos , Mutação , Neoplasias/genética , Neoplasias/terapia , Evasão Tumoral
19.
Gastro Hep Adv ; 1(4): 682-697, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36277993

RESUMO

Background and Aims: Eicosanoids, oxidized fatty acids that serve as cell-signaling molecules, have been broadly implicated in tumorigenesis. Here, we aimed to identify eicosanoids associated with pancreatic tumorigenesis and the cell types responsible for their synthesis. Methods: We profiled normal pancreas and pancreatic ductal adenocarcinoma (PDAC) in mouse models and patient samples using mass spectrometry. We interrogated RNA sequencing datasets for eicosanoid synthase or receptor expression. Findings were confirmed by immunostaining. Results: In murine models, we identified elevated levels of PGD2, prostacyclin, and thromboxanes in neoplasia while PGE2, 12-HHTre, HETEs, and HDoHEs are elevated specifically in tumors. Analysis of scRNA-seq datasets suggests that PGE2 and prostacyclins are derived from fibroblasts, PGD2 and thromboxanes from myeloid cells, and PGD2 and 5-HETE from tuft cells. In patient samples, we identified a transition from PGD2 to PGE2-producing enzymes in the epithelium during the transition to PDAC, fibroblast/tumor expression of PTGIS, and myeloid/tumor cell expression of TBXAS1. Conclusions: Our analyses identify key changes in eicosanoid species during pancreatic tumorigenesis and the cell types that contribute to their synthesis. Thromboxane and prostacyclin expression is conserved between animal models and human disease and may represent new druggable targets.

20.
Elife ; 112022 08 09.
Artigo em Inglês | MEDLINE | ID: mdl-35942952

RESUMO

Transforming growth factor ß (TGFß) is an important differentiation factor for cytotoxic T lymphocytes (CTLs) and alters the expression levels of several of homing receptors during infection. SMAD4 is part of the canonical signaling network used by members of the transforming growth factor family. For this study, genetically modified mice were used to determine how SMAD4 and TGFß receptor II (TGFßRII) participate in transcriptional programming of pathogen-specific CTLs. We show that these molecules are essential components of opposing signaling mechanisms, and cooperatively regulate a collection of genes that determine whether specialized populations of pathogen-specific CTLs circulate around the body, or settle in peripheral tissues. TGFß uses a canonical SMAD-dependent signaling pathway to downregulate Eomesodermin (EOMES), KLRG1, and CD62L, while CD103 is induced. Conversely, in vivo and in vitro data show that EOMES, KLRG1, CX3CR1, and CD62L are positively regulated via SMAD4, while CD103 and Hobit are downregulated. Intravascular staining also shows that signaling via SMAD4 promotes formation of long-lived terminally differentiated CTLs that localize in the vasculature. Our data show that inflammatory molecules play a key role in lineage determination of pathogen-specific CTLs, and use SMAD-dependent signaling to alter the expression levels of multiple homing receptors and transcription factors with known functions during memory formation.


Assuntos
Receptor do Fator de Crescimento Transformador beta Tipo II , Proteína Smad4 , Linfócitos T Citotóxicos , Fator de Crescimento Transformador beta , Animais , Diferenciação Celular , Camundongos , Receptor do Fator de Crescimento Transformador beta Tipo II/metabolismo , Transdução de Sinais/genética , Proteína Smad4/genética , Proteína Smad4/metabolismo , Fator de Crescimento Transformador beta/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA