Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 19 de 19
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Chemistry ; 30(9): e202303438, 2024 Feb 12.
Artigo em Inglês | MEDLINE | ID: mdl-38032321

RESUMO

Manganese(I) carbonyl complexes bearing a MACHO-type ligand (HN(CH2 CH2 PR2 )2 ) readily react in their amido form with CO2 to generate 4-membered {Mn-N-C-O} metallacycles. The stability of the adducts decreases with the steric demand of the R groups at phosphorous (R=isopropyl>adamantyl). The CO2 -adducts display generally a lower reactivity as compared to the parent amido complexes. These adducts can thus be interpretated as masked forms of the active amido catalysts and potentially play important roles as off-loop species or branching points in catalytic transformations of carbon dioxide.

2.
J Am Chem Soc ; 145(31): 17103-17111, 2023 Aug 09.
Artigo em Inglês | MEDLINE | ID: mdl-37490541

RESUMO

Hydrogenation reactions of carbon-carbon unsaturated bonds are central in synthetic chemistry. Efficient catalysis of these reactions classically recourses to heterogeneous or homogeneous transition-metal species. Whether thermal or electrochemical, C-C multiple bond catalytic hydrogenations commonly involve metal hydrides as key intermediates. Here, we report that the electrocatalytic alkyne semihydrogenation by molecular Ni bipyridine complexes proceeds without the mediation of a hydride intermediate. Through a combined experimental and theoretical investigation, we disclose a mechanism that primarily involves a nickelacyclopropene resting state upon alkyne binding to a low-valent Ni(0) species. A following sequence of protonation and electron transfer steps via Ni(II) and Ni(I) vinyl intermediates then leads to olefin release in an overall ECEC-type pattern as the most favored pathway. Our results also evidence that pathways involving hydride intermediates are strongly disfavored, which in turn promotes high semihydrogenation selectivity by avoiding competing hydrogen evolution. While bypassing catalytically competent hydrides, this type of mechanism still retains inner-metal-sphere characteristics with the formation of organometallic intermediates, often essential to control regio- or stereoselectivity. We think that this approach to electrocatalytic reductions of unsaturated organic groups can open new paradigms for hydrogenation or hydroelementation reactions.

3.
J Am Chem Soc ; 144(47): 21530-21543, 2022 11 30.
Artigo em Inglês | MEDLINE | ID: mdl-36383737

RESUMO

N-Heterocyclic carbenes (NHCs) are widely used ligands in transition metal catalysis. Notably, they are increasingly encountered in heterogeneous systems. While a detailed knowledge of the possibly multiple metal environments would be essential to understand the activity of metal-NHC-based heterogeneous catalysts, only a few techniques currently have the ability to describe with atomic-resolution structures dispersed on a solid support. Here, we introduce a new dynamic nuclear polarization (DNP) surface-enhanced solid-state nuclear magnetic resonance (NMR) approach that, in combination with advanced density functional theory (DFT) calculations, allows the structure characterization of isolated silica-supported Pt-NHC sites. Notably, we demonstrate that the signal amplification provided by DNP in combination with fast magic angle spinning enables the implementation of sensitive 13C-195Pt correlation experiments. By exploiting 1J(13C-195Pt) couplings, 2D NMR spectra were acquired, revealing two types of Pt sites. For each of them, 1J(13C-195Pt) value was determined as well as 195Pt chemical shift tensor parameters. To interpret the NMR data, DFT calculations were performed on an extensive library of molecular Pt-NHC complexes. While one surface site was identified as a bis-NHC compound, the second site most likely contains a bidentate 1,5-cyclooctadiene ligand, pointing to various parallel grafting mechanisms. The methodology described here represents a new step forward in the atomic-level description of catalytically relevant surface metal-NHC complexes. In particular, it opens up innovative avenues for exploiting the spectral signature of platinum, one of the most widely used transition metals in catalysis, but whose use for solid-state NMR remains difficult. Our results also highlight the sensitivity of 195Pt NMR parameters to slight structural changes.


Assuntos
Complexos de Coordenação , Elementos de Transição , Ligantes , Metano/química , Espectroscopia de Ressonância Magnética , Platina/química , Complexos de Coordenação/química
4.
JACS Au ; 2(6): 1266-1289, 2022 Jun 27.
Artigo em Inglês | MEDLINE | ID: mdl-35783173

RESUMO

Electrocatalysis enables the formation or cleavage of chemical bonds by a genuine use of electrons or holes from an electrical energy input. As such, electrocatalysis offers resource-economical alternative pathways that bypass sacrificial, waste-generating reagents often required in classical thermal redox reactions. In this Perspective, we showcase the exploitation of molecular electrocatalysts for electrosynthesis, in particular for reductive conversion of organic substrates. Selected case studies illustrate that efficient molecular electrocatalysts not only are appropriate redox shuttles but also embrace the features of organometallic catalysis to facilitate and control chemical steps. From these examples, guidelines are proposed for the design of molecular electrocatalysts suited to the reduction of organic substrates. We finally expose opportunities brought by catalyzed electrosynthesis to functionalize organic backbones, namely using sustainable building blocks.

5.
JACS Au ; 2(3): 573-578, 2022 Mar 28.
Artigo em Inglês | MEDLINE | ID: mdl-35373211

RESUMO

Electrifying the production of base and fine chemicals calls for the development of electrocatalytic methodologies for these transformations. We show here that the semihydrogenation of alkynes, an important transformation in organic synthesis, is electrocatalyzed at room temperature by a simple complex of earth-abundant nickel, [Ni(bpy)3]2+. The approach operates under mild conditions and is selective toward the semihydrogenated olefins with good to very good Z isomer stereoselectivity. (Spectro)electrochemistry supports that the electrocatalytic cycle is initiated in an atypical manner with a nickelacyclopropene complex, which upon further protonation is converted into a putative cationic Ni(II)-vinyl intermediate that produces the olefin after electron-proton uptake. This work establishes a proof of concept for homogeneous electrocatalysis applied to alkyne semihydrogenation, with opportunities to improve the yields and stereoselectivity.

6.
Inorg Chem ; 60(24): 19062-19078, 2021 Dec 20.
Artigo em Inglês | MEDLINE | ID: mdl-34851088

RESUMO

Coordination compounds of earth-abundant 3d transition metals are among the most effective catalysts for the electrochemical reduction of carbon dioxide (CO2). While the properties of the metal center are crucial for the ability of the complexes to electrochemically activate CO2, systematic variations of the metal within an identical, redox-innocent ligand backbone remain insufficiently investigated. Here, we report on the synthesis, structural and spectroscopic characterization, and electrochemical investigation of a series of 3d transition-metal complexes [M = Mn(I), Fe(II), Co(II), Ni(II), Cu(I), and Zn(II)] coordinated by a new redox-innocent PNP pincer ligand system. Only the Fe, Co, and Ni complexes reveal distinct metal-centered electrochemical reductions from M(II) down to M(0) and show indications for interaction with CO2 in their reduced states. The Ni(0) d10 species associates with CO2 to form a putative Aresta-type Ni-η2-CO2 complex, where electron transfer to CO2 through back-bonding is insufficient to enable electrocatalytic activity. By contrast, the Co(0) d9 intermediate binding CO2 can undergo additional electron uptake into a formal cobalt(I) metallacarboxylate complex able to promote turnover. Our data, together with the few literature precedents, single out that an unsaturated coordination sphere (coordination number = 4 or 5) and a d7-to-d9 configuration in the reduced low oxidation state (+I or 0) are characteristics that foster electrochemical CO2 activation for complexes based on redox-innocent ligands.

7.
ACS Cent Sci ; 6(7): 1189-1198, 2020 Jul 22.
Artigo em Inglês | MEDLINE | ID: mdl-32724853

RESUMO

Heterogeneous catalysts in the form of atomically dispersed metals on a support provide the most efficient utilization of the active component, which is especially important for scarce and expensive late transition metals. These catalysts also enable unique opportunities to understand reaction pathways through detailed spectroscopic and computational studies. Here, we demonstrate that atomically dispersed iridium sites on indium tin oxide prepared via surface organometallic chemistry display exemplary catalytic activity in one of the most challenging electrochemical processes, the oxygen evolution reaction (OER). In situ X-ray absorption studies revealed the formation of IrV=O intermediate under OER conditions with an Ir-O distance of 1.83 Å. Modeling of the reaction mechanism indicates that IrV=O is likely a catalyst resting state, which is subsequently oxidized to IrVI enabling fast water nucleophilic attack and oxygen evolution. We anticipate that the applied strategy can be instrumental in preparing and studying a broad range of atomically dispersed transition metal catalysts on conductive oxides for (photo)electrochemical applications.

8.
Angew Chem Int Ed Engl ; 59(45): 19999-20007, 2020 Nov 02.
Artigo em Inglês | MEDLINE | ID: mdl-32633063

RESUMO

Supported metal nanoparticles are a very large class of heterogeneous catalysts. While detailed structure-activity relationships require a molecular-level description of the interactions between the metal surfaces and ligands/substrates, this description is rarely accessible. Thus, most insights are derived from models based on single crystals. With the goal to understand alkyne semihydrogenation catalysts based on Cu functionalized with N-heterocyclic carbene (NHC), we cross this gap by investigating NHC-stabilized molecular complexes, supported single sites and nanoparticles by solid-state NMR combined with computations. We show that in silica-supported Cu single sites, Cu retains the coordination geometry observed in molecular compounds, while, for supported Cu nanoparticles, which are active and selective for the semihydrogenation of alkynes, NHC binding is favored at Cu adatoms atop of copper surface, thus paralleling conclusions of surface science studies on single crystals.

9.
Chem Sci ; 10(16): 4469-4475, 2019 Apr 28.
Artigo em Inglês | MEDLINE | ID: mdl-31057774

RESUMO

Hydrogen production through direct sunlight-driven water splitting in photo-electrochemical cells (PECs) is a promising solution for energy sourcing. PECs need to fulfill three criteria: sustainability, cost-effectiveness and stability. Here we report an efficient and stable photocathode platform for H2 evolution based on Earth-abundant elements. A p-type silicon surface was protected by atomic layer deposition (ALD) with a 15 nm TiO2 layer, on top of which a 300 nm mesoporous TiO2 layer was spin-coated. The cobalt diimine-dioxime molecular catalyst was covalently grafted onto TiO2 through phosphonate anchors and an additional 0.2 nm ALD-TiO2 layer was applied for stabilization. This assembly catalyzes water reduction into H2 in phosphate buffer (pH 7) with an onset potential of +0.47 V vs. RHE. The resulting current density is -1.3 ± 0.1 mA cm-2 at 0 V vs. RHE under AM 1.5 solar irradiation, corresponding to a turnover number of 260 per hour of operation and a turnover frequency of 0.071 s-1.

10.
Chem Sci ; 9(32): 6721-6738, 2018 Aug 28.
Artigo em Inglês | MEDLINE | ID: mdl-30310606

RESUMO

Dye-sensitized photo-electrochemical cells (DS-PECs) form an emerging technology for the large-scale storage of solar energy in the form of (solar) fuels because of the low cost and ease of processing of their constitutive photoelectrode materials. Preparing such molecular photocathodes requires a well-controlled co-immobilization of molecular dyes and catalysts onto transparent semiconducting materials. Here we used a series of surface analysis techniques to describe the molecular assembly of a push-pull organic dye and a cobalt diimine-dioxime catalyst co-grafted on a p-type NiO electrode substrate. (Photo)electrochemical measurements allowed characterization of electron transfer processes within such an assembly and to demonstrate for the first time that a CoI species is formed as the entry into the light-driven H2 evolution mechanism of a dye-sensitized photocathode. This co-grafted noble-metal free H2-evolving photocathode architecture displays similar performances to its covalent dye-catalyst counterpart based on the same catalytic moiety. Post-operando time-of-flight secondary ion mass spectrometry (ToF-SIMS) analysis of these photoelectrodes after extensive photoelectrochemical operation suggested decomposition pathways of the dye and triazole linkage used to graft the catalyst onto NiO, providing grounds for the design of optimized molecular DS-PEC components with increased robustness upon turnover.

11.
Chem Sci ; 9(24): 5366-5371, 2018 Jun 28.
Artigo em Inglês | MEDLINE | ID: mdl-30009008

RESUMO

We report a surface organometallic route that generates copper nanoparticles (NPs) on a silica support while simultaneously passivating the silica surface with trimethylsiloxy groups. The material is active for the catalytic semihydrogenation of phenylalkyl-, dialkyl- and diaryl-alkynes and displays high chemo- and stereoselectivity at full alkyne conversion to corresponding (Z)-olefins in the presence of an N-heterocyclic carbene (NHC) ligand. Solid-state NMR spectroscopy using the NHC ligand 13C-labeled at the carbenic carbon reveals a genuine coordination of the carbene to Cu NPs. The presence of distinct Cu surface environments and the coordination of the NHC to specific Cu sites likely account for the increased selectivity.

12.
J Am Chem Soc ; 140(1): 451-458, 2018 01 10.
Artigo em Inglês | MEDLINE | ID: mdl-29219306

RESUMO

Improvement of the oxygen evolution reaction (OER) is a challenging step toward the development of sustainable energy technologies. Enhancing the OER rate and efficiency relies on understanding the water oxidation mechanism, which entails the characterization of the reaction intermediates. Very active Ru-bda type (bda is 2,2'-bipyridine-6,6'-dicarboxylate) molecular OER catalysts are proposed to operate via a transient 7-coordinate RuV═O intermediate, which so far has never been detected due to its high reactivity. Here we prepare and characterize a well-defined supported Ru(bda) catalyst on porous indium tin oxide (ITO) electrode. Site isolation of the catalyst molecules on the electrode surface allows trapping of the key 7-coordinate RuV═O intermediate at potentials above 1.34 V vs NHE at pH 1, which is characterized by electron paramagnetic resonance and in situ X-ray absorption spectroscopies. The in situ extended X-ray absorption fine structure analysis shows a Ru═O bond distance of 1.75 ± 0.02 Å, consistent with computational results. Electrochemical studies and density functional theory calculations suggest that the water nucleophilic attack on the surface-bound RuV═O intermediate (O-O bond formation) is the rate limiting step for OER catalysis at low pH.

13.
J Am Chem Soc ; 138(42): 14152-14158, 2016 Oct 26.
Artigo em Inglês | MEDLINE | ID: mdl-27690409

RESUMO

Photoelectrochemical CO2 reduction activity of a hybrid photocathode, based on a Ru(II)-Re(I) supramolecular metal complex photocatalyst immobilized on a NiO electrode (NiO-RuRe), was confirmed in an aqueous electrolyte solution. Under half-reaction conditions, the NiO-RuRe photocathode generated CO with high selectivity, and its turnover number for CO formation reached 32 based on the amount of immobilized RuRe. A photoelectrochemical cell comprising a NiO-RuRe photocathode and a CoOx/TaON photoanode showed activity for visible-light-driven CO2 reduction using water as a reductant to generate CO and O2, with the assistance of an external electrical (0.3 V) and chemical (0.10 V) bias produced by a pH difference. This is the first example of a molecular and semiconductor photocatalyst hybrid-constructed photoelectrochemical cell for visible-light-driven CO2 reduction using water as a reductant.

14.
Chem Commun (Camb) ; 52(95): 13728-13748, 2016 Nov 22.
Artigo em Inglês | MEDLINE | ID: mdl-27711416

RESUMO

The active sites of hydrogenases have inspired the design of molecular catalysts for hydrogen evolution and oxidation. In this feature article, we showcase key elements of bio-inspiration before embarking on a tour of a representative series of molecular hydrogen evolving catalysts (HECs) and describing the toolbox available for benchmarking their performances. We then show how such catalysts can be immobilized on conducting substrates to prepare electrode materials active for hydrogen evolution and oxidation with a special emphasis on cobalt diimine-dioxime complexes and DuBois' nickel diphosphine compounds. We finally discuss the optimization required for implementing molecular-engineered materials into operational devices and illustrate how such molecular approaches can be expanded to other fuel-forming processes such as the electrochemical valorisation of carbon dioxide and the oxygen reduction or water oxidation reactions.

15.
J Am Chem Soc ; 138(38): 12308-12311, 2016 09 28.
Artigo em Inglês | MEDLINE | ID: mdl-27595317

RESUMO

Dye-sensitized photoelectrochemical cells (DS-PECs) for water splitting hold promise for the large-scale storage of solar energy in the form of (solar) fuels, owing to the low cost and ease to process of their constitutive photoelectrode materials. The efficiency of such systems ultimately depends on our capacity to promote unidirectional light-driven electron transfer from the electrode substrate to a catalytic moiety. We report here on the first noble-metal free and covalent dye-catalyst assembly able to achieve photoelectrochemical visible light-driven H2 evolution in mildly acidic aqueous conditions when grafted onto p-type NiO electrode substrate.

16.
Phys Chem Chem Phys ; 18(16): 10727-38, 2016 Apr 28.
Artigo em Inglês | MEDLINE | ID: mdl-26734947

RESUMO

We investigated a range of different mesoporous NiO electrodes prepared by different research groups and private firms in Europe to determine the parameters which influence good quality photoelectrochemical devices. This benchmarking study aims to solve some of the discrepancies in the literature regarding the performance of p-DSCs due to differences in the quality of the device fabrication. The information obtained will lay the foundation for future photocatalytic systems based on sensitized NiO so that new dyes and catalysts can be tested with a standardized material. The textural and electrochemical properties of the semiconducting material are key to the performance of photocathodes. We found that both commercial and non-commercial NiO gave promising solar cell and water-splitting devices. The NiO samples which had the two highest solar cell efficiency (0.145% and 0.089%) also gave the best overall theoretical H2 conversion.

17.
Interface Focus ; 5(3): 20140083, 2015 Jun 06.
Artigo em Inglês | MEDLINE | ID: mdl-26052420

RESUMO

Moving from homogeneous water-splitting photocatalytic systems to photoelectrochemical devices requires the preparation and evaluation of novel p-type transparent conductive photoelectrode substrates. We report here on the sensitization of polystyrene-block-poly-(2-vinylpyridine) (PS-b-P2VP) diblock copolymer-templated NiO films with an organic push-pull dye. The potential of these new templated NiO film preparations for photoelectrochemical applications is compared with NiO material templated by F108 triblock copolymers. We conclude that NiO films are promising materials for the construction of dye-sensitized photocathodes to be inserted into photoelectrochemical (PEC) cells. However, a combined effort at the interface between materials science and molecular chemistry, ideally funded within a Global Artificial Photosynthesis Project, is still needed to improve the overall performance of the photoelectrodes and progress towards economically viable PEC devices.

18.
J Phys Chem B ; 119(43): 13707-13, 2015 Oct 29.
Artigo em Inglês | MEDLINE | ID: mdl-25993343

RESUMO

We report here that a bioinspired cobalt diimine-dioxime molecular catalyst for hydrogen evolution immobilized onto carbon nanotube electrodes proves tolerant toward oxygen. The cobalt complex catalyzes O2 reduction with an onset potential of +0.55 V vs RHE. In this process, a mixture of water and hydrogen peroxide is produced in a 3:1 ratio. Our study evidences that such side-reductions have little impact on effectiveness of proton reduction by the grafted molecular catalyst which still displays good activity for H2 evolution in the presence of O2. The presence of O2 in the media is not detrimental toward H2 evolution under the conditions used, which simulate turn-on conditions of a water-splitting device.

19.
Acc Chem Res ; 48(5): 1286-95, 2015 May 19.
Artigo em Inglês | MEDLINE | ID: mdl-25941953

RESUMO

Mimicking photosynthesis and producing solar fuels is an appealing way to store the huge amount of renewable energy from the sun in a durable and sustainable way. Hydrogen production through water splitting has been set as a first-ranking target for artificial photosynthesis. Pursuing that goal requires the development of efficient and stable catalytic systems, only based on earth abundant elements, for the reduction of protons from water to molecular hydrogen. Cobalt complexes based on glyoxime ligands, called cobaloximes, emerged 10 years ago as a first generation of such catalysts. They are now widely utilized for the construction of photocatalytic systems for hydrogen evolution. In this Account, we describe our contribution to the development of a second generation of catalysts, cobalt diimine-dioxime complexes. While displaying similar catalytic activities as cobaloximes, these catalysts prove more stable against hydrolysis under strongly acidic conditions thanks to the tetradentate nature of the diimine-dioxime ligand. Importantly, H2 evolution proceeds via proton-coupled electron transfer steps involving the oxime bridge as a protonation site, reproducing the mechanism at play in the active sites of hydrogenase enzymes. This feature allows H2 to be evolved at modest overpotentials, that is, close to the thermodynamic equilibrium over a wide range of acid-base conditions in nonaqueous solutions. Derivatization of the diimine-dioxime ligand at the hydrocarbon chain linking the two imine functions enables the covalent grafting of the complex onto electrode surfaces in a more convenient manner than for the parent bis-bidentate cobaloximes. Accordingly, we attached diimine-dioxime cobalt catalysts onto carbon nanotubes and demonstrated the catalytic activity of the resulting molecular-based electrode for hydrogen evolution from aqueous acetate buffer. The stability of immobilized catalysts was found to be orders of magnitude higher than that of catalysts in the bulk. It led us to evidence that these cobalt complexes, as cobaloximes and other cobalt salts do, decompose under turnover conditions where they are free in solution. Of note, this process generates in aqueous phosphate buffer a nanoparticulate film consisting of metallic cobalt coated with a cobalt-oxo/hydroxo-phosphate layer in contact with the electrolyte. This novel material, H2-CoCat, mediates H2 evolution from neutral aqueous buffer at low overpotentials. Finally, the potential of diimine-dioxime cobalt complexes for light-driven H2 generation has been attested both in water/acetonitrile mixtures and in fully aqueous solutions. All together, these studies hold promise for the construction of molecular-based photoelectrodes for H2 evolution and further integration in dye-sensitized photoelectrochemical cells (DS-PECs) able to achieve overall water splitting.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA