Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 42
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Sci Rep ; 13(1): 21826, 2023 12 09.
Artigo em Inglês | MEDLINE | ID: mdl-38071366

RESUMO

Radiocesium released by the Fukushima Dai-ichi Nuclear Power Plant (FDNPP) accident still exists in the environment in two forms: adsorbed species on mineral particles in the soil and microparticles containing radiocesium mainly composed of silicate glass (CsMPs). CsMPs are dispersed not only around the FDNPP but also over a wide area of the Kanto region. The behavior and characteristics of CsMPs must be investigated to evaluate the impact of the FDNPP accident. Deposited particles including radiocesium were wiped from metal handrails on balconies and car hoods using tissue papers at six locations in the Kanto region (Tokai village, Ushiku City, Abiko City, Chiba City, Kawaguchi City, and Arakawa Ward) between March 15 and 21, 2011. CsMPs were isolated from the samples, and their characteristics were investigated. In total, 106 CsMPs derived from Unit 2 were successfully separated from 13 tissue paper samples. The radiation images of the two types of CsMPs discovered in Ushiku City demonstrate that CsMPs can easily become susceptible to fragmentation over time, even in the absence of weathering effects.


Assuntos
Acidente Nuclear de Fukushima , Monitoramento de Radiação , Poluentes Radioativos do Solo , Poluentes Radioativos da Água , Radioisótopos de Césio/análise , Japão , Poluentes Radioativos da Água/análise , Poluentes Radioativos do Solo/análise , Centrais Nucleares
2.
J Phys Chem Lett ; 14(47): 10664-10669, 2023 Nov 30.
Artigo em Inglês | MEDLINE | ID: mdl-37988084

RESUMO

Ice IV is a metastable high-pressure phase of ice in which the water molecules exhibit orientational disorder. Although orientational ordering is commonly observed for other ice phases, it has not been reported for ice IV. We conducted in situ powder neutron diffraction experiments for DCl-doped D2O ice IV to investigate its hydrogen ordering. We found abrupt changes in the temperature derivative of unit-cell volume, dV/dT, at ∼120 K, and revealed a slightly ordered structure at low temperatures based on the Rietveld method. The occupancy of the D1 site deviates from 0.5 in particular; it increased when samples were cooled at higher pressures and reached 0.174(14) at 2.38 GPa, 58 K. Our results evidence the presence of a low-symmetry hydrogen-ordered state corresponding to ice IV. It seems, however, difficult to experimentally access the completely ordered phase corresponding to ice IV by slow cooling at high pressure.

3.
Acta Crystallogr B Struct Sci Cryst Eng Mater ; 79(Pt 5): 414-426, 2023 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-37703290

RESUMO

The structure of a recently found hyperhydrated form of sodium chloride (NaCl·13H2O and NaCl·13D2O) has been determined by in situ single-crystal neutron diffraction at 1.7 GPa and 298 K. It has large hydrogen-bond networks and some water molecules have distorted bonding features such as bifurcated hydrogen bonds and five-coordinated water molecules. The hydrogen-bond network has similarities to ice VI in terms of network topology and disordered hydrogen bonds. Assuming the equivalence of network components connected by pseudo-symmetries, the overall network structure of this hydrate can be expressed by breaking it down into smaller structural units which correspond to the ice VI network structure. This hydrogen-bond network contains orientational disorder of water molecules in contrast to the known salt hydrates. An example is presented here for further insights into a hydrogen-bond network containing ionic species.

4.
Sci Rep ; 13(1): 3537, 2023 Mar 02.
Artigo em Inglês | MEDLINE | ID: mdl-36864194

RESUMO

Relative nitrogen abundance normalized by carbonaceous chondrites in the bulk silicate Earth appears to be depleted compared to other volatile elements. Especially, nitrogen behavior in the deep part of the Earth such as the lower mantle is not clearly understood. Here, we experimentally investigated the temperature dependence of nitrogen solubility in bridgmanite which occupies 75 wt.% of the lower mantle. The experimental temperature ranged from 1400 to 1700 °C at 28 GPa in the redox state corresponding to the shallow lower mantle. The maximum nitrogen solubility in bridgmanite (MgSiO3) increased from 1.8 ± 0.4 to 5.7 ± 0.8 ppm with increasing temperature from 1400 to 1700 °C. The nitrogen storage capacity of Mg-endmember bridgmanite under the current temperature conditions is 3.4 PAN (PAN: mass of present atmospheric nitrogen). Furthermore, the nitrogen solubility of bridgmanite increased with increasing temperature, in contrast to the nitrogen solubility of metallic iron. Thus, the nitrogen storage capacity of bridgmanite can be larger than that of metallic iron during the solidification of the magma ocean. Such a "hidden" nitrogen reservoir formed by bridgmanite in the lower mantle may have depleted the apparent nitrogen abundance ratio in the bulk silicate Earth.

5.
Acta Crystallogr C Struct Chem ; 79(Pt 2): 68, 2023 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-36739612

RESUMO

In the paper by Yamashita et al. [Acta Cryst. (2022), C78, 749-754], an incorrect phrase is updated.

6.
Nat Commun ; 13(1): 7517, 2022 Dec 06.
Artigo em Inglês | MEDLINE | ID: mdl-36473837

RESUMO

Ferropericlase (Mg,Fe)O is the second most abundant mineral in Earth's lower mantle and a common inclusion found in subcratonic diamonds. Pyrolitic mantle has Mg# (100 × Mg/(Mg+Fe)) ~89. However, ferropericlase inclusions in diamonds show a broad range of Mg# between 12 and 93. Here we use Synchrotron Mössbauer Source (SMS) spectroscopy and single-crystal X-ray diffraction to determine the iron oxidation state and structure of two magnesiowüstite and three ferropericlase inclusions in diamonds from São Luiz, Brazil. Inclusion Mg#s vary between 16.1 and 84.5. Ferropericlase inclusions contain no ferric iron within the detection limit of SMS, while both magnesiowüstite inclusions show the presence of monocrystalline magnesioferrite ((Mg,Fe)Fe3+2O4) with an estimated 47-53 wt% Fe2O3. We argue that the wide range of Fe concentrations observed in (Mg,Fe)O inclusions in diamonds and the appearance of magnesioferrite result from oxidation of ferropericlase triggered by the introduction of subducted material into sublithospheric mantle.

7.
ACS Omega ; 7(49): 44670-44676, 2022 Dec 13.
Artigo em Inglês | MEDLINE | ID: mdl-36530237

RESUMO

We report a method to synthesize dolomite [CaMg(CO3)2] from amorphous calcium magnesium carbonate (ACMC) via solid-state transformation. When ACMC is heated in air, it does not crystallize into dolomite but decomposes into Mg calcite, magnesium oxide, and CO2. Hence, we heated ACMC in a closed system filled with CO2 gas (pCO2 >1.2 bar at 420 °C) and produced submicron-sized dolomite. Single-phase dolomite was obtained after dissolving impurities in the run products, such as northupite [Na3Mg(CO3)2Cl] and eitelite [Na2Mg(CO3)2], in water. Also, we investigated the crystallization process of dolomite by changing the heating temperature and heating time. Despite crystallization by solid-state transformation, the heated samples crystallized to dolomite via Ca-rich protodolomite with no ordering reflection of X-ray diffraction as previously observed for hydrothermal synthesis. The results demonstrated that this crystallization pathway is kinetically favored even in solid-state transformation and that the Ca-rich protodolomite phase preferentially crystallizes during heating, leading to phase separation from the amorphous phase. Therefore, the crystallization process via protodolomite as a precursor is a common mechanism in dolomite crystallization, suggesting the presence of kinetic barriers other than hydration of cations.

8.
Acta Crystallogr C Struct Chem ; 78(Pt 12): 749-754, 2022 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-36468558

RESUMO

A new hydrate form of potassium chloride, KCl·H2O, is identified for the first time by in situ single-crystal X-ray diffraction under high pressure. It has a monoclinic structure with lattice parameters of a = 5.687 (7), b = 6.3969 (3), c = 8.447 (3) Šand ß = 107.08 (8)° at 2.23 (4) GPa and 295 K. The structure of this hydrate has K-Cl alignments similar to the B1 phase of anhydrous KCl, while water molecules intercalate among the ionic species. The coordination structures of the K and Cl atoms can be regarded as the intermediate states between the B1 and B2 phases of KCl. This finding provides a perspective on the structural interpretation of multicomponent materials and an additional candidate for bound water in salt-water systems under high pressure, such as inside of icy bodies.

9.
Proc Natl Acad Sci U S A ; 119(40): e2208717119, 2022 Oct 04.
Artigo em Inglês | MEDLINE | ID: mdl-36161890

RESUMO

Ice polymorphs show extraordinary structural diversity depending on pressure and temperature. The behavior of hydrogen-bond disorder not only is a key ingredient for their structural diversity but also controls their physical properties. However, it has been a challenge to determine the details of the disordered structure in ice polymorphs under pressure, because of the limited observable reciprocal space and inaccuracies related to high-pressure techniques. Here, we present an elucidation of the disordered structure of ice VII, the dominant high-pressure form of water, at 2.2 GPa and 298 K, from both single-crystal and powder neutron-diffraction techniques. We reveal the three-dimensional atomic distributions from the maximum entropy method and unexpectedly find a ring-like distribution of hydrogen in contrast to the commonly accepted discrete sites. In addition, total scattering analysis at 274 K clarified the difference in the intermolecular structure from ice VIII, the ordered counterpart of ice VII, despite an identical molecular geometry. Our complementary structure analyses robustly demonstrate the unique disordered structure of ice VII. Furthermore, these findings are related to proton dynamics, which drastically vary with pressure, and will contribute to an understanding of the structural origin of anomalous physical properties of ice VII under pressures.

10.
Nat Commun ; 13(1): 1942, 2022 Apr 11.
Artigo em Inglês | MEDLINE | ID: mdl-35410458

RESUMO

Manganese oxides are ubiquitous marine minerals which are redox sensitive. As major components of manganese nodules found on the ocean floor, birnessite and buserite have been known to be two distinct water-containing minerals with manganese octahedral interlayer separations of ~7 Å and ~10 Å, respectively. We show here that buserite is a super-hydrated birnessite formed near 5 km depth conditions. As one of the most hydrous minerals containing ca. 34.5 wt. % water, super-hydrated birnessite, i.e., buserite, remains stable up to ca. 70 km depth conditions, where it transforms into manganite by releasing ca. 24.3 wt. % water. Subsequent transformations to hausmannite and pyrochroite occur near 100 km and 120 km depths, respectively, concomitant with a progressive reduction of Mn4+ to Mn2+. Our work forwards an abiotic geochemical cycle of manganese minerals in subduction and/or other aqueous terrestrial environments, with implications for water storage and cycling, and the redox capacity of the region.

11.
Sci Rep ; 11(1): 12632, 2021 Jun 24.
Artigo em Inglês | MEDLINE | ID: mdl-34168164

RESUMO

Hydrogen (H) is considered to be one of the candidates for light elements in the Earth's core, but the amount and timing of delivery have been unknown. We investigated the effects of sulfur (S), another candidate element in the core, on deuteration of iron (Fe) in iron-silicate-water system up to 6-12 GPa, ~ 1200 K using in situ neutron diffraction measurements. The sample initially contained saturated water (D2O) as Mg(OD)2 in the ideal composition (Fe-MgSiO3-D2O) of the primitive Earth. In the existence of water and sulfur, phase transitions of Fe, dehydration of Mg(OD)2, and formation of iron sulfide (FeS) and silicates occurred with increasing temperature. The deuterium (D) solubility (x) in iron deuterides (FeDx) increased with temperature and pressure, resulting in a maximum of x = 0.33(4) for the hydrous sample without S at 11.2 GPa and 1067 K. FeS was hardly deuterated until Fe deuteration had completed. The lower D concentrations in the S-containing system do not exceed the miscibility gap (x < ~ 0.4). Both H and S can be incorporated into solid Fe and other light elements could have dissolved into molten iron hydride and/or FeS during the later process of Earth's evolution.

13.
Nat Commun ; 12(1): 1129, 2021 Feb 18.
Artigo em Inglês | MEDLINE | ID: mdl-33602936

RESUMO

Ice exhibits extraordinary structural variety in its polymorphic structures. The existence of a new form of diversity in ice polymorphism has recently been debated in both experimental and theoretical studies, questioning whether hydrogen-disordered ice can transform into multiple hydrogen-ordered phases, contrary to the known one-to-one correspondence between disordered ice and its ordered phase. Here, we report a high-pressure phase, ice XIX, which is a second hydrogen-partially-ordered phase of ice VI. We demonstrate that disordered ice undergoes different manners of hydrogen ordering, which are thermodynamically controlled by pressure in the case of ice VI. Such multiplicity can appear in all disordered ice, and it widely provides a research approach to deepen our knowledge, for example of the crucial issues of ice: the centrosymmetry of hydrogen-ordered configurations and potentially induced (anti-)ferroelectricity. Ultimately, this research opens up the possibility of completing the phase diagram of ice.

14.
Sci Rep ; 10(1): 10897, 2020 Jul 02.
Artigo em Inglês | MEDLINE | ID: mdl-32616729

RESUMO

Nitrogen is a crucial volatile element in the early Earth's evolution and the origin of life. Despite its importance, nitrogen's behavior in the Earth's interior remains poorly understood. Compared to other volatile elements, nitrogen is depleted in the Earth's atmosphere (the so-called "missing nitrogen"), calling for a hidden deep reservoir. To investigate nitrogen's behavior in the deep Earth including how the reservoir formed, high-pressure and high-temperature experiments were conducted at 28 GPa and 1,400-1,700 °C. To reproduce the conditions in the lower mantle, the redox was controlled using a Fe-FeO buffer. We observed that depending on the temperature conditions, stishovite can incorporate up to 90-404 ppm nitrogen, experimentally demonstrating that stishovite has the highest nitrogen solubility among the deep mantle minerals. Stishovite is the main mineral component of subducted nitrogen-rich sedimentary rocks and eroded continental crust that are eventually transported down to the lower mantle. Our results suggest that nitrogen could have been continuously transported into the lower mantle via subduction, ever since plate tectonics began.

15.
Commun Biol ; 3(1): 136, 2020 04 02.
Artigo em Inglês | MEDLINE | ID: mdl-32242062

RESUMO

The upper oceanic crust is mainly composed of basaltic lava that constitutes one of the largest habitable zones on Earth. However, the nature of deep microbial life in oceanic crust remains poorly understood, especially where old cold basaltic rock interacts with seawater beneath sediment. Here we show that microbial cells are densely concentrated in Fe-rich smectite on fracture surfaces and veins in 33.5- and 104-million-year-old (Ma) subseafloor basaltic rock. The Fe-rich smectite is locally enriched in organic carbon. Nanoscale solid characterizations reveal the organic carbon to be microbial cells within the Fe-rich smectite, with cell densities locally exceeding 1010 cells/cm3. Dominance of heterotrophic bacteria indicated by analyses of DNA sequences and lipids supports the importance of organic matter as carbon and energy sources in subseafloor basalt. Given the prominence of basaltic lava on Earth and Mars, microbial life could be habitable where subsurface basaltic rocks interact with liquid water.


Assuntos
Bactérias/crescimento & desenvolvimento , Sedimentos Geológicos/microbiologia , Processos Heterotróficos , Silicatos , Bactérias/genética , Bactérias/metabolismo , Carbono/metabolismo , Metabolismo Energético , Metabolismo dos Lipídeos , Microbiota , Oceano Pacífico , Ribotipagem
16.
Proc Natl Acad Sci U S A ; 117(12): 6356-6361, 2020 Mar 24.
Artigo em Inglês | MEDLINE | ID: mdl-32161135

RESUMO

Above 2 GPa the phase diagram of water simplifies considerably and exhibits only two solid phases up to 60 GPa, ice VII and ice VIII. The two phases are related to each other by hydrogen ordering, with the oxygen sublattice being essentially the same. Here we present neutron diffraction data to 15 GPa which reveal that the rate of hydrogen ordering at the ice VII-VIII transition decreases strongly with pressure to reach timescales of minutes at 10 GPa. Surprisingly, the ordering process becomes more rapid again upon further compression. We show that such an unusual change in transition rate can be explained by a slowing down of the rotational dynamics of water molecules with a simultaneous increase of translational motion of hydrogen under pressure, as previously suspected. The observed cross-over in the hydrogen dynamics in ice is likely the origin of various hitherto unexplained anomalies of ice VII in the 10-15 GPa range reported by Raman spectroscopy, X-ray diffraction, and proton conductivity.

17.
Nat Commun ; 11(1): 464, 2020 Feb 03.
Artigo em Inglês | MEDLINE | ID: mdl-32015342

RESUMO

Water freezes below 0 °C at ambient pressure ordinarily to ice Ih, with hexagonal stacking sequence. Under certain conditions, ice with a cubic stacking sequence can also be formed, but ideal ice Ic without stacking-disorder has never been formed until recently. Here we demonstrate a route to obtain ice Ic without stacking-disorder by degassing hydrogen from the high-pressure form of hydrogen hydrate, C2, which has a host framework isostructural with ice Ic. The stacking-disorder free ice Ic is formed from C2 via an intermediate amorphous or nano-crystalline form under decompression, unlike the direct transformations occurring in ice XVI from neon hydrate, or ice XVII from hydrogen hydrate. The obtained ice Ic shows remarkable thermal stability, until the phase transition to ice Ih at 250 K, originating from the lack of dislocations. This discovery of ideal ice Ic will promote understanding of the role of stacking-disorder on the physical properties of ice as a counter end-member of ice Ih.

18.
Biochem Biophys Res Commun ; 523(4): 853-858, 2020 03 19.
Artigo em Inglês | MEDLINE | ID: mdl-31954516

RESUMO

Mechanical stimulation is well known to be important for maintaining tissue and organ homeostasis. Here, we found that hydrostatic pressure induced nuclear translocation of a forkhead box O (FOXO) transcription factor DAF-16, in C. elegans within minutes, whereas the removal of this pressure resulted in immediate export of DAF-16 to the cytoplasm. We also monitored DAF-16-dependent transcriptional changes by exposure to 1 MPa pressure for 5 min, and found significant changes in collagen and other genes in a DAF-16 dependent manner. Lifespan was markedly prolonged with exposure to cyclic pressure treatment (1 MPa once a day for 5 min from L1 larvae until death). Furthermore, age-dependent decline in locomotor activity was suppressed by the treatment. In contrast, the nuclear translocation of the yes-associated protein YAP-1 was not induced under the same pressure conditions. Thus, moderate hydrostatic pressure improves ageing progression through activation of DAF-16/FOXO in C. elegans.


Assuntos
Proteínas de Caenorhabditis elegans/metabolismo , Caenorhabditis elegans/metabolismo , Núcleo Celular/metabolismo , Fatores de Transcrição Forkhead/metabolismo , Pressão Hidrostática , Proteínas Adaptadoras de Transdução de Sinal , Animais , Caenorhabditis elegans/genética , Regulação da Expressão Gênica , Larva/metabolismo , Longevidade , Atividade Motora , Transporte Proteico , Transcrição Gênica , Proteínas de Sinalização YAP
19.
Acta Crystallogr C Struct Chem ; 75(Pt 12): 1605-1612, 2019 12 01.
Artigo em Inglês | MEDLINE | ID: mdl-31802749

RESUMO

A high-pressure phase of magnesium chloride hexahydrate (MgCl2·6H2O-II) and its deuterated counterpart (MgCl2·6D2O-II) have been identified for the first time by in-situ single-crystal X-ray and powder neutron diffraction. The crystal structure was analyzed by the Rietveld method for the neutron diffraction pattern based on the initial structure determined by single-crystal X-ray diffraction. This high-pressure phase has a similar framework to that in the known ambient-pressure phase, but exhibits some structural changes with symmetry reduction caused by a subtle modification in the hydrogen-bond network around the Mg(H2O)6 octahedra. These structural features reflect the strain in the high-pressure phases of MgCl2 hydrates.

20.
Sci Rep ; 9(1): 11306, 2019 08 05.
Artigo em Inglês | MEDLINE | ID: mdl-31383916

RESUMO

Basalt weathering in oceanic crust controls long-term elemental cycling on Earth. It is unknown whether basalt weathering tends to continue in unsedimented oceanic crust with formation ages of >10-20 million years (Ma), when fluid circulation is restricted by the formation of secondary minerals in fractures/veins. We investigated basalt weathering in 13.5-, 33.5- and 104-Ma oceanic crust below the South Pacific Gyre by combining bulk and in-situ clay mineral characterisations. Here we show the formation of iron-rich smectite at the rims of fractures/veins in 33.5-Ma and 104-Ma core samples from depths as great as 121 metres below the seafloor. In contrast, iron-rich smectite formation was not observed in three 13.5-Ma core samples, which suggests that iron-rich smectite formation may be affected by the dilution of aqueous silica supplied from basalt dissolution by actively circulating fluid. As iron-rich smectite from the 33.5-Ma and 104-Ma core samples was more enriched in Mg and K than that typically found at hydrothermal mounds, iron-rich smectite formation appears to result from basalt weathering rather than hydrothermal alteration. Our results suggest that unsedimented basaltic basement is permeable and reactive to host microbial life in aged oceanic crust on Earth and possibly in the deep subsurface on Mars.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA