Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Plant Sci ; 340: 111970, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38163623

RESUMO

Quantitative wood anatomy is a subfield in dendrochronology that requires effective open-source image analysis tools. In this research, the bioimage analysis software QuPath (v0.4.4) is introduced as a candidate for accurately quantifying the cellular properties of the xylem in an automated manner. Additionally, the potential of QuPath to detect the transition of early- to latewood tracheids over the growing season was evaluated to assess a potential application in dendroecological studies. Various algorithms in QuPath were optimized to quantify different xylem cell types in Eucalyptus grandis and the transition of early- to latewood tracheids in Pinus radiata. These algorithms were coded into cell detection scripts for automatic quantification of stem microsections and compared to a manually curated method to assess the accuracy of the cell detections. The automatic cell detection approach, using QuPath, has been validated to be reproducible with an acceptable error when assessing fibers, vessels, early- and latewood tracheids. However, further optimization for parenchyma is still required. This proposed method developed in QuPath provides a scalable and accurate approach for quantifying anatomical features in stem microsections. With minor amendments to the detection and classification algorithms, this strategy is likely to be viable in other plant species.


Assuntos
Eucalyptus , Pinus , Madeira/anatomia & histologia , Xilema , Estações do Ano
2.
Glob Chang Biol ; 29(20): 5908-5923, 2023 10.
Artigo em Inglês | MEDLINE | ID: mdl-37551846

RESUMO

Episodic tree mortality can be caused by various reasons. This study describes climate-driven tree mortality and tree growth in the Black Forest mountain range in Germany. It is based on a 68-year consistent data series describing the annual mortality of all trees growing in a forest area of almost 250 thousand ha. The study excludes mortality caused by storm, snow and ice, and fire. The sequence of the remaining mortality, the so-called "desiccated trees," is analyzed and compared with the sequence of the climatic water balance during the growing season and the annual radial growth of Norway spruce in the Black Forest. The annual radial growth series covers 121 years and the climatic water balance series 140 years. These unique time series enable a quantitative assessment of multidecadal drought and heat impacts on growth and mortality of forest trees on a regional spatial scale. Data compiled here suggest that the mortality of desiccated trees in the Black Forest during the last 68 years is driven by the climatic water balance. Decreasing climatic water balance coincided with an increase in tree mortality and growth decline. Consecutive hot and dry summers enhance mortality and growth decline as a consequence of drought legacies lasting several years. The sensitivity of tree growth and mortality to changes in the climatic water balance increases with the decreasing trend of the climatic water balance. The findings identify the climatic water balance as the main driver of mortality and growth variation during the 68-year observation period on a landscape-scale including a variety of different sites. They suggest that bark beetle population dynamics modify mortality rates. They as well provide evidence that the mortality during the last 140 years never was as high as in the most recent years.


Assuntos
Besouros , Árvores , Animais , Florestas , Estações do Ano , Secas , Água , Mudança Climática
3.
Sci Total Environ ; 854: 158703, 2023 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-36099953

RESUMO

Severe drought events negatively affect tree growth and often cause legacy effects, expressed by smaller tree rings in the post-drought recovery years. While the pattern of reduced tree-ring widths is frequently described the processes underlying such legacy effects, i.e., whether it is due to shorter growth periods or lower growth rates, remains unclear and is investigated in this study. To elucidate these post-drought effects, we examined radial stem growth dynamics monitored with precision band-dendrometers on 144 Douglas fir, Norway spruce and silver fir sample trees distributed along four elevational gradients in the Black Forest (Southwest Germany) during the post-drought years 2019 and 2020. Growth onset of all investigated species occurred between 11 and 24 days significantly earlier in 2020 compared to 2019. Modelling growth onset based on chilling and forcing units and taking the study year into account explained 88-98 % of the variance in the growth onset data. The highly significant effect of the study year (p < 0.001) led to the conclusion, that other factors than the prevailing site conditions (chilling and forcing units) must have triggered the earlier growth onset in 2020. On the other hand, for Douglas fir growth rates were significantly higher in 2020 compared to 2019 (2.9 µm d-1) and marginally significantly higher for silver fir (1.3 µm d-1), underlining the explanatory power of growth rate on recovery processes in general and suggesting that Douglas fir copes better with droughts, as it recovered faster. Growth dynamics at the beginning of the year showed limited growth for earlier growth onsets, which, however, could not explain the difference between the investigated years. Our results provide evidence that legacy effects of drought events are expressed by a delayed growth onset and a reduced growth rate in the post-drought year and that Douglas fir has a superior recovery potential.


Assuntos
Abies , Picea , Pseudotsuga , Traqueófitas , Secas , Florestas
4.
Nat Commun ; 13(1): 28, 2022 01 10.
Artigo em Inglês | MEDLINE | ID: mdl-35013178

RESUMO

Heatwaves exert disproportionately strong and sometimes irreversible impacts on forest ecosystems. These impacts remain poorly understood at the tree and species level and across large spatial scales. Here, we investigate the effects of the record-breaking 2018 European heatwave on tree growth and tree water status using a collection of high-temporal resolution dendrometer data from 21 species across 53 sites. Relative to the two preceding years, annual stem growth was not consistently reduced by the 2018 heatwave but stems experienced twice the temporary shrinkage due to depletion of water reserves. Conifer species were less capable of rehydrating overnight than broadleaves across gradients of soil and atmospheric drought, suggesting less resilience toward transient stress. In particular, Norway spruce and Scots pine experienced extensive stem dehydration. Our high-resolution dendrometer network was suitable to disentangle the effects of a severe heatwave on tree growth and desiccation at large-spatial scales in situ, and provided insights on which species may be more vulnerable to climate extremes.


Assuntos
Mudança Climática , Desidratação , Ecologia , Florestas , Raios Infravermelhos , Clima , Secas , Ecossistema , Noruega , Picea , Pinus sylvestris , Solo , Árvores , Água
5.
Sci Rep ; 10(1): 16284, 2020 10 01.
Artigo em Inglês | MEDLINE | ID: mdl-33004966

RESUMO

Hydroclimate, the interplay of moisture supply and evaporative demand, is essential for ecological and agricultural systems. The understanding of long-term hydroclimate changes is, however, limited because instrumental measurements are inadequate in length to capture the full range of precipitation and temperature variability and by the uneven distribution of high-resolution proxy records in space and time. Here, we present a tree-ring-based reconstruction of interannual to centennial-scale groundwater level (GWL) fluctuations for south-western Germany and north-eastern France. Continuously covering the period of 265-2017 CE, our new record from the Upper Rhine Valley shows that the warm periods during late Roman, medieval and recent times were characterized by higher GWLs. Lower GWLs were found during the cold periods of the Late Antique Little Ice Age (LALIA; 536 to ~ 660 CE) and the Little Ice Age (LIA; between medieval and recent warming). The reconstructed GWL fluctuations are in agreement with multidecadal North Atlantic climate variability derived from independent proxies. Warm and wet hydroclimate conditions are found during warm states of the Atlantic Ocean and positive phases of the North Atlantic Oscillation on decadal scales.

7.
Tree Physiol ; 37(1): 47-59, 2017 01 31.
Artigo em Inglês | MEDLINE | ID: mdl-28173593

RESUMO

A useful approach to monitor tree response to climate change and environmental extremes is the recording of long-term time series of stem radial variations obtained with precision dendrometers. Here, we study the impact of environmental stress on seasonal growth dynamics and productivity of yellow birch (Betula alleghaniensis Britton) and sugar maple (Acer saccharum Marsh.) in the Great Lakes, St Lawrence forest region of Ontario. Specifically, we research the effects of a spring heat wave in 2010, and a summer drought in 2012 that occurred during the 2005­14 study period. We evaluated both growth phenology (onset, cessation, duration of radial growth, time of maximum daily growth rate) and productivity (monthly and seasonal average growth rates, maximum daily growth rate, tree-ring width) and tested for differences and interactions among species and years. Productivity of sugar maple was drastically compromised by a 3-day spring heat wave in 2010 as indicated by low growth rates, very early growth cessation and a lagged growth onset in the following year. Sugar maple also responded more sensitively than yellow birch to a prolonged drought period in July 2012, but final tree-ring width was not significantly reduced due to positive responses to above-average temperatures in the preceding spring. We conclude that sugar maple, a species that currently dominates northern hardwood forests, is vulnerable to heat wave disturbances during leaf expansion, which might occur more frequently under anticipated climate change.


Assuntos
Acer/crescimento & desenvolvimento , Betula/crescimento & desenvolvimento , Secas , Temperatura Alta , Folhas de Planta/crescimento & desenvolvimento , Árvores/crescimento & desenvolvimento , Mudança Climática , Florestas , Ontário , Estações do Ano , Estresse Fisiológico
8.
Tree Physiol ; 36(10): 1260-1271, 2016 10.
Artigo em Inglês | MEDLINE | ID: mdl-27344064

RESUMO

The importance of European beech (Fagus sylvatica L.) for the Central European forest and wood sector demands profound research to examine the adaptive capacity of beech forests to changing environmental conditions. Quantitative wood anatomy is a valuable tool for studying the relation between structural and functional traits of trees, but due to the laborious methodology not many studies have thus far been performed on the conductive tissue of broadleaf tree species with diffuse-porous wood structure. The aim of our research was to test the effects of aspect and thinning on vessel anatomical features of European beech (vessel density, vessel size, total vessel area, vessel groups and hydraulic conductivity). Our analysis of increment cores of trees sampled from a long-term experimental research area on the Swabian Alb showed that (i) the variations in different vessel traits were mainly controlled by tree-ring width. Additionally, we could observe that (ii) thinning contributed to a safer water transport by decreasing vessel size and that (iii) the aspect modified these responses. Our results provide new insights into the plastic response of European beech wood anatomy to warmer climatic conditions and demonstrated that thinning of the forest stands modified the water-conducting system to become more resistant against hydraulic failure.


Assuntos
Fagus/fisiologia , Árvores/fisiologia , Xilema/fisiologia , Conservação dos Recursos Naturais , Florestas , Hidrologia , Água/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA