Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Ger Med Sci ; 22: Doc01, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38515785

RESUMO

In order to discuss first experiences with the implementation of the EU Regulation on In Vitro Diagnostic Medical Devices (IVDR) about one year after its entry into force, the German Association of the Scientific Medical Societies (AWMF e.V.) organized a full-day public webinar. Overall, it became clear that the implementation of the IVDR still poses significant challenges for laboratory medicine and pathology. Corrections at the political level and implementation with a sense of proportion are required. Before the long-term goal of the IVDR, i.e. the increase in patient safety, can be realized, the prevention of disadvantages for patients due to gaps in care must be strived for in the medium term by all parties involved.


Assuntos
Medicina , Humanos , Sociedades Médicas
2.
Pathologie (Heidelb) ; 44(Suppl 2): 86-95, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-38047950

RESUMO

BACKGROUND: Regulation (EU) 2017/746 on in vitro diagnostic medical devices (IVDR) imposes several conditions on pathology departments that develop and use in-house in vitro diagnostic medical devices (IH-IVDs). However, not all of these conditions need to be implemented immediately after the IVDR entered into force on 26 May 2022. Based on an amending regulation of the European Parliament and the Council of the European Union, the requirements for IH-IVDs will be phased in. Conformity with the essential safety and performance requirements of annex I must be ensured from May 2022. OBJECTIVES: With this article, we would like to present the practical implementation of the currently valid conditions for IH-IVDs at the Institute of Pathology at the University Hospital of Heidelberg, in order to provide possible assistance to other institutions. CONCLUSIONS: In addition to the intensive work on the requirements for IH-IVDs, several guidance documents and handouts provide orientation for the implementation and harmonisation of the requirements for healthcare institutions mentioned in Article 5 (5). Exchange in academic network structures is also of great importance for the interpretation and practical implementation of the IVDR. For university and nonuniversity institutions, ensuring conformity with the IVDR represents a further challenge in terms of personnel and time, in addition to the essential tasks of patient care, teaching and research and the further development of methods for optimal and targeted diagnostics, as well as the maintenance of the constantly evolving quality management system.


Assuntos
Kit de Reagentes para Diagnóstico , Humanos , União Europeia
3.
Pathologie (Heidelb) ; 44(6): 381-391, 2023 Nov.
Artigo em Alemão | MEDLINE | ID: mdl-37792098

RESUMO

BACKGROUND: Regulation (EU) 2017/746 on in vitro diagnostic medical devices (IVDR) imposes several conditions on pathology institutes that develop and use in-house in vitro diagnostic medical devices (IH-IVDs). However, not all of these conditions need to be implemented immediately after the IVDR entered into force on 26 May 2022. Based on an amending regulation of the European Parliament and the Council of the European Union, the requirements for IH-IVDs will be phased in. Conformity with the essential safety and performance requirements of annex I must be ensured from May 2022. OBJECTIVES: With this article, we would like to present the practical implementation of the currently valid conditions for IH-IVDs at the Institute of Pathology at the University Hospital of Heidelberg, in order to provide possible assistance to other institutions. CONCLUSIONS: In addition to the intensive work on the requirements for IH-IVDs, several guidance documents and handouts provide orientation for the implementation and harmonisation of the requirements for healthcare institutions mentioned in Article 5 (5). Exchange in academic network structures is also of great importance for the interpretation and practical implementation of the IVDR. For university and nonuniversity institutions, ensuring conformity with the IVDR represents a further challenge in terms of personnel and time, in addition to the essential tasks of patient care, teaching and research and the further development of methods for optimal and targeted diagnostics, as well as the maintenance of the constantly evolving quality management system.


Assuntos
Kit de Reagentes para Diagnóstico , Humanos , União Europeia
4.
Pathologie (Heidelb) ; 44(Suppl 2): 73-85, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-36735063

RESUMO

BACKGROUND: Regulation (EU) 2017/746 on in vitro diagnostic medical devices (IVDR) was passed by the European Parliament and the Council of the European Union on 5 April 2017 and came into force on 26 May 2017. A new amending regulation, which introduces a phased implementation of the IVDR with new transitional provisions for certain in vitro diagnostic medical devices (IVDs) and a later date of application of some requirements for in-house devices for healthcare facilities, was adopted on 15 December 2021. The combined use of CE-certified IVDs (CE-IVDs), in-house IVDs (IH-IVDs), and research use only (RUO) devices are a cornerstone of diagnostics in pathology departments and crucial for optimal patient care. The IVDR not only regulates the manufacture and placement on the market of industrially manufactured IVDs, but also imposes conditions on the manufacture and use of IH-IVDs for internal use by healthcare facilities. OBJECTIVES: Our work provides an overview of the background and structure of the IVDR and identifies core areas that need to be interpreted and fleshed out in the context of the legal framework as well as expert knowledge. CONCLUSIONS: The gaps and ambiguities in the IVDR crucially require the expertise of professional societies, alliances, and individual stakeholders to successfully facilitate the implementation and use of the IVDR in pathology departments and to avoid aberrant developments.


Assuntos
Comércio , Kit de Reagentes para Diagnóstico , Humanos , União Europeia , Instalações de Saúde
5.
Pathologie (Heidelb) ; 43(5): 351-364, 2022 Sep.
Artigo em Alemão | MEDLINE | ID: mdl-35925306

RESUMO

BACKGROUND: Regulation (EU) 2017/746 on in vitro diagnostic medical devices (IVDR) was passed by the European Parliament and the Council of the European Union on 5 April 2017 and came into force on 26 May 2017. A new amending regulation, which introduces a phased implementation of the IVDR with new transitional provisions for certain in vitro diagnostic medical devices and a later date of application of some requirements for in-house devices for healthcare facilities, was adopted on 15 December 2021. The combined use of CE-IVDs, in-house IVDs, and RUO products are a cornerstone of diagnostics in pathology departments and crucial for optimal patient care. The IVDR not only regulates the manufacture and placement on the market of industrially manufactured IVDs, but also imposes conditions on the manufacture and use of IH-IVDs for internal use by healthcare facilities. OBJECTIVES: Our work provides an overview of the background and structure of the IVDR and identifies core areas that need to be interpreted and fleshed out in the context of the legal framework as well as expert knowledge. CONCLUSIONS: The gaps and ambiguities in the IVDR crucially require the expertise of professional societies, alliances, and individual stakeholders to successfully facilitate the implementation and use of the IVDR in pathology departments and to avoid aberrant developments.


Assuntos
Comércio , Kit de Reagentes para Diagnóstico , União Europeia , Humanos
6.
Plant J ; 88(4): 521-530, 2016 11.
Artigo em Inglês | MEDLINE | ID: mdl-27458713

RESUMO

DNA lesions such as crosslinks represent obstacles for the replication machinery. Nonetheless, replication can proceed via the DNA damage tolerance pathway also known as postreplicative repair pathway. SNF2 ATPase Rad5 homologs, such as RAD5A of the model plant Arabidopsis thaliana, are important for the error-free mode of this pathway. We able to demonstrate before, that RAD5A is a key factor in the repair of DNA crosslinks in Arabidopsis. Here, we show by in vitro analysis that AtRAD5A protein is a DNA translocase able to catalyse fork regression. Interestingly, replication forks with a gap in the leading strand are processed best, in line with its suggested function. Furthermore AtRAD5A catalyses branch migration of a Holliday junction and is furthermore not impaired by the DNA binding of a model protein, which is indicative of its ability to displace other proteins. Rad5 homologs possess HIRAN (Hip116, Rad5; N-terminal) domains. By biochemical analysis we were able to demonstrate that the HIRAN domain variant from Arabidopsis RAD5A mediates structure selective DNA binding without the necessity for a free 3'OH group as has been shown to be required for binding of HIRAN domains in a mammalian RAD5 homolog. The biological importance of the HIRAN domain in AtRAD5A is demonstrated by our result that it is required for its function in DNA crosslink repair in vivo.


Assuntos
Proteínas de Arabidopsis/metabolismo , Arabidopsis/metabolismo , DNA/metabolismo , Arabidopsis/genética , Proteínas de Arabidopsis/genética , DNA/química , Dano ao DNA/genética , Dano ao DNA/fisiologia , DNA Helicases/genética , DNA Helicases/metabolismo , Reparo do DNA/genética , Reparo do DNA/fisiologia , Replicação do DNA/genética , Replicação do DNA/fisiologia , Ligação Proteica
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA