Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 37
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Water Res ; 243: 120371, 2023 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-37506634

RESUMO

Microbes are sensitive indicators of estuarine processes because they respond rapidly to dynamic disturbance events. As most of the world's population lives in urban areas and climate change-related disturbance events are becoming more frequent, estuaries bounded by cities are experiencing increasing stressors, at the same time that their ecosystem services are required more than ever. Here, using a multidisciplinary approach, we determined the response of planktonic microbial assemblages in response to seasonality and a rainfall disturbance in an urban estuary bounded by Australia's largest city, Sydney. We used molecular barcoding (16S, 18S V4 rRNA) and microscopy-based identification to compare microbial assemblages at locations with differing characteristics and urbanisation histories. Across 142 samples, we identified 8,496 unique free-living bacterial zOTUs, 8,175 unique particle associated bacterial zOTUs, and 1,920 unique microbial eukaryotic zOTUs. Using microscopy, we identified only the top <10% abundant, larger eukaryotic taxa (>10 µm), however quantification was possible. The site with the greater history of anthropogenic impact showed a more even community of associated bacteria and eukaryotes, and a significant increase in dissolved inorganic nitrogen following rainfall, when compared to the more buffered site. This coincided with a reduced proportional abundance of Actinomarina and Synechococcus spp., a change in SAR 11 clades, and an increase in the eukaryotic microbial groups Dinophyceae, Mediophyceae and Bathyoccocaceae, including a temporary dominance of the harmful algal bloom dinoflagellate Prorocentrum cordatum (syn. P. minimum). Finally, a validated hydrodynamic model of the estuary supported these results, showing that the more highly urbanised and upstream location consistently experienced a higher magnitude of salinity reduction in response to rainfall events during the study period. The best abiotic variables to explain community dissimilarities between locations were TDP, PN, modelled temperature and salinity (r = 0.73) for the free living bacteria, TP for the associated bacteria (r = 0.43), and modelled temperature (r = 0.28) for the microbial eukaryotic communities. Overall, these results show that a minor disturbance such as a brief rainfall event can significantly shift the microbial assemblage of an anthropogenically impacted area within an urban estuary to a greater degree than a seasonal change, but may result in a lesser response to the same disturbance at a buffered, more oceanic influenced location. Fine scale research into the factors driving the response of microbial communities in urban estuaries to climate related disturbances will be necessary to understand and implement changes to maintain future estuarine ecosystem services.


Assuntos
Diatomáceas , Dinoflagellida , Ecossistema , Estuários , Plâncton , Oceanos e Mares , Bactérias/genética
2.
Plant J ; 115(4): 926-936, 2023 08.
Artigo em Inglês | MEDLINE | ID: mdl-37147901

RESUMO

Diatoms are photosynthetic unicellular microalgae that drive global ecological phenomena in the biosphere and are emerging as sustainable feedstock for an increasing number of industrial applications. Diatoms exhibit enormous taxonomic and genetic diversity, which often results in peculiar biochemical and biological traits. Transposable elements (TEs) represent a substantial portion of diatom genomes and have been hypothesized to exert a relevant role in enriching genetic diversity and making a core contribution to genome evolution. Here, through long-read whole-genome sequencing, we identified a mutator-like element (MULE) in the model diatom Phaeodactylum tricornutum, and we report the direct observation of its mobilization within the course of a single laboratory experiment. Under selective conditions, this TE inactivated the uridine monophosphate synthase (UMPS) gene of P. tricornutum, one of the few endogenous genetic loci currently targeted for selectable auxotrophy for functional genetics and genome-editing applications. We report the observation of a recently mobilized transposon in diatoms with unique features. These include the combined presence of a MULE transposase with zinc-finger SWIM-type domains and a diatom-specific E3 ubiquitin ligase of the zinc-finger UBR type, which are suggestive of a mobilization mechanism. Our findings provide new elements for the understanding of the role of TEs in diatom genome evolution and in the enrichment of intraspecific genetic variability.


Assuntos
Diatomáceas , Animais , Diatomáceas/genética , Diatomáceas/metabolismo , Genoma , Uridina Monofosfato/metabolismo , Equidae/genética , Zinco/metabolismo
3.
J Virol ; 96(20): e0078322, 2022 10 26.
Artigo em Inglês | MEDLINE | ID: mdl-36190242

RESUMO

Unicellular microalgae are of immense ecological importance with growing commercial potential in industries such as renewable energy, food, and pharmacology. Viral infections can have a profound impact on the growth and evolution of their hosts. However, very little is known of the diversity within, and the effect of, unicellular microalgal RNA viruses. In addition, identifying RNA viruses in these organisms that could have originated more than a billion years ago constitutes a robust data set to dissect molecular events and address fundamental questions in virus evolution. We assessed the diversity of RNA viruses in eight microalgal cultures, including representatives from the diatom, eustigmatophyte, dinoflagellate, red algae, and euglenid groups. Using metatranscriptomic sequencing combined with bioinformatic approaches optimized to detect highly divergent RNA viruses, we identified 10 RNA virus sequences, with nine constituting new viral species. Most of the newly identified RNA viruses belonged to the double-stranded Totiviridae, Endornaviridae, and Partitiviridae, greatly expanding the reported host range for these families. Two new species belonging to the single-stranded RNA viral clade Marnaviridae, commonly associated with microalgal hosts, were also identified. This study highlights that a substantial diversity of RNA viruses likely exists undetected within the unicellular microalgae. It also highlights the necessity for RNA viral characterization and for investigation of the effects of viral infections on microalgal physiology, biology, and growth, considering their environmental and industrial roles. IMPORTANCE Our knowledge of the diversity of RNA viruses infecting microbial algae-the microalgae-is minimal. However, describing the RNA viruses infecting these organisms is of primary importance at both the ecological and economic scales because of the fundamental roles these organisms play in aquatic environments and their growing value across a range of industrial fields. Using metatranscriptomic sequencing, we aimed to reveal the RNA viruses present in cultures of eight microalgae species belonging to the diatom, dinoflagellate, eustigmatophyte, rhodophyte, and euglena major clades of algae. Accordingly, we identified 10 new divergent RNA virus species belonging to RNA virus families as diverse as the double-stranded Totiviridae, Endornaviridae, and Partitiviridae and the single-stranded Marnaviridae. By expanding the known diversity of RNA viruses infecting unicellular eukaryotes, this study contributes to a better understanding of the early evolution of the virosphere and will inform the use of microalgae in industrial applications.


Assuntos
Diatomáceas , Dinoflagellida , Microalgas , Vírus de RNA , Diatomáceas/genética , Dinoflagellida/genética , Microalgas/genética , Filogenia , Vírus de RNA/genética , Plantas , RNA , Genoma Viral
4.
Glob Chang Biol ; 28(19): 5741-5754, 2022 10.
Artigo em Inglês | MEDLINE | ID: mdl-35795906

RESUMO

Despite their relatively high thermal optima (Topt ), tropical taxa may be particularly vulnerable to a rising baseline and increased temperature variation because they live in relatively stable temperatures closer to their Topt . We examined how microbial eukaryotes with differing thermal histories responded to temperature fluctuations of different amplitudes (0 control, ±2, ±4°C) around mean temperatures below or above their Topt . Cosmopolitan dinoflagellates were selected based on their distinct thermal traits and included two species of the same genus (tropical and temperate Coolia spp.), and two strains of the same species maintained at different temperatures for >500 generations (tropical Amphidinium massartii control temperature and high temperature, CT and HT, respectively). There was a universal decline in population growth rate under temperature fluctuations, but strains with narrower thermal niche breadth (temperate Coolia and HT) showed ~10% greater reduction in growth. At suboptimal mean temperatures, cells in the cool phase of the fluctuation stopped dividing, fixed less carbon (C) and had enlarged cell volumes that scaled positively with elemental C, N, and P and C:Chlorophyll-a. However, at a supra-optimal mean temperature, fixed C was directed away from cell division and novel trait combinations developed, leading to greater phenotypic diversity. At the molecular level, heat-shock proteins, and chaperones, in addition to transcripts involving genome rearrangements, were upregulated in CT and HT during the warm phase of the supra-optimal fluctuation (30 ± 4°C), a stress response indicating protection. In contrast, the tropical Coolia species upregulated major energy pathways in the warm phase of its supra-optimal fluctuation (25 ± 4°C), indicating a broadscale shift in metabolism. Our results demonstrate divergent effects between taxa and that temporal variability in environmental conditions interacts with changes in the thermal mean to mediate microbial responses to global change, with implications for biogeochemical cycling.


Assuntos
Mudança Climática , Dinoflagellida , Temperatura Baixa , Dinoflagellida/genética , Temperatura Alta , Fenótipo , Temperatura
5.
Sci Data ; 9(1): 153, 2022 04 05.
Artigo em Inglês | MEDLINE | ID: mdl-35383179

RESUMO

The Symbiodiniaceae are a taxonomically and functionally diverse family of marine dinoflagellates. Their symbiotic relationship with invertebrates such as scleractinian corals has made them the focus of decades of research to resolve the underlying biology regulating their sensitivity to stressors, particularly thermal stress. Research to-date suggests that Symbiodiniaceae stress sensitivity is governed by a complex interplay between phylogenetic dependent and independent traits (diversity of characteristics of a species). Consequently, there is a need for datasets that simultaneously broadly resolve molecular and physiological processes under stressed and non-stressed conditions. Therefore, we provide a dataset simultaneously generating transcriptome, metabolome, and proteome data for three ecologically important Symbiodiniaceae isolates under nutrient replete growth conditions and two temperature treatments (ca. 26 °C and 32 °C). Elevated sea surface temperature is primarily responsible for coral bleaching events that occur when the coral-Symbiodiniaceae relationship has been disrupted. Symbiodiniaceae can strongly influence their host's response to thermal stress and consequently it is necessary to resolve drivers of Symbiodiniaceae heat stress tolerance. We anticipate these datasets to expand our understanding on the key genotypic and functional properties that influence the sensitivities of Symbiodiniaceae to thermal stress.


Assuntos
Antozoários , Dinoflagellida , Animais , Antozoários/genética , Antozoários/metabolismo , Dinoflagellida/genética , Dinoflagellida/metabolismo , Resposta ao Choque Térmico , Metaboloma , Filogenia , Proteoma , Simbiose , Transcriptoma
6.
Nat Commun ; 13(1): 1301, 2022 03 14.
Artigo em Inglês | MEDLINE | ID: mdl-35288549

RESUMO

Mixotrophic protists (unicellular eukaryotes) that engage in both phototrophy (photosynthesis) and phago-heterotrophy (engulfment of particles)-are predicted to contribute substantially to energy fluxes and marine biogeochemical cycles. However, their impact remains largely unquantified. Here we describe the sophisticated foraging strategy of a widespread mixotrophic dinoflagellate, involving the production of carbon-rich 'mucospheres' that attract, capture, and immobilise microbial prey facilitating their consumption. We provide a detailed characterisation of this previously undescribed behaviour and reveal that it represents an overlooked, yet quantitatively significant mechanism for oceanic carbon fluxes. Following feeding, the mucospheres laden with surplus prey are discarded and sink, contributing an estimated 0.17-1.24 mg m-2 d-1 of particulate organic carbon, or 0.02-0.15 Gt to the biological pump annually, which represents 0.1-0.7% of the estimated total export from the euphotic zone. These findings demonstrate how the complex foraging behaviour of a single species of mixotrophic protist can disproportionally contribute to the vertical flux of carbon in the ocean.


Assuntos
Ciclo do Carbono , Dinoflagellida , Carbono , Processos Heterotróficos , Oceanos e Mares
7.
BMC Bioinformatics ; 23(1): 49, 2022 Jan 22.
Artigo em Inglês | MEDLINE | ID: mdl-35065593

RESUMO

BACKGROUND: Quality control checks are the first step in RNA-Sequencing analysis, which enable the identification of common issues that occur in the sequenced reads. Checks for sequence quality, contamination, and complexity are commonplace, and allow users to implement steps downstream which can account for these issues. Strand-specificity of reads is frequently overlooked and is often unavailable even in published data, yet when unknown or incorrectly specified can have detrimental effects on the reproducibility and accuracy of downstream analyses. RESULTS: To address these issues, we developed how_are_we_stranded_here, a Python library that helps to quickly infer strandedness of paired-end RNA-Sequencing data. Testing on both simulated and real RNA-Sequencing reads showed that it correctly measures strandedness, and measures outside the normal range may indicate sample contamination. CONCLUSIONS: how_are_we_stranded_here is fast and user friendly, making it easy to implement in quality control pipelines prior to analysing RNA-Sequencing data. how_are_we_stranded_here is freely available at https://github.com/betsig/how_are_we_stranded_here .


Assuntos
Sequenciamento de Nucleotídeos em Larga Escala , Software , RNA-Seq , Reprodutibilidade dos Testes , Análise de Sequência de DNA , Análise de Sequência de RNA
8.
Microb Ecol ; 83(4): 1073-1087, 2022 May.
Artigo em Inglês | MEDLINE | ID: mdl-34331071

RESUMO

Bacterial members of the coral holobiont play an important role in determining coral fitness. However, most knowledge of the coral microbiome has come from reef-building scleractinian corals, with far less known about the nature and importance of the microbiome of octocorals (subclass Octocorallia), which contribute significantly to reef biodiversity and functional complexity. We examined the diversity and structure of the bacterial component of octocoral microbiomes over summer and winter, with a focus on two temperate (Erythropodium hicksoni, Capnella gaboensis; Sydney Harbour) and two tropical (Sinularia sp., Sarcophyton sp.; Heron Island) species common to reefs in eastern Australia. Bacterial communities associated with these octocorals were also compared to common temperate (Plesiastrea versipora) and tropical (Acropora aspera) hard corals from the same reefs. Using 16S rRNA amplicon sequencing, bacterial diversity was found to be heterogeneous among octocorals, but we observed changes in composition between summer and winter for some species (C. gaboensis and Sinularia sp.), but not for others (E. hicksoni and Sarcophyton sp.). Bacterial community structure differed significantly between all octocoral species within both the temperate and tropical environments. However, on a seasonal basis, those differences were less pronounced. The microbiomes of C. gaboensis and Sinularia sp. were dominated by bacteria belonging to the genus Endozoicomonas, which were a key conserved feature of their core microbiomes. In contrast to previous studies, our analysis revealed that Endozoicomonas phylotypes are shared across different octocoral species, inhabiting different environments. Together, our data demonstrates that octocorals harbour a broad diversity of bacterial partners, some of which comprise 'core microbiomes' that potentially impart important functional roles to their hosts.


Assuntos
Antozoários , Gammaproteobacteria , Microbiota , Animais , Antozoários/microbiologia , Bactérias/genética , Biodiversidade , Recifes de Corais , Gammaproteobacteria/genética , RNA Ribossômico 16S/genética
9.
ISME Commun ; 2(1): 16, 2022 Feb 14.
Artigo em Inglês | MEDLINE | ID: mdl-37938744

RESUMO

Ecological interactions between marine bacteria and phytoplankton play a pivotal role in governing the ocean's major biogeochemical cycles. Among these, members of the marine Roseobacter Group (MRG) can establish mutualistic relationships with phytoplankton that are, in part, maintained by exchanges of the organosulfur compound, dimethylsulfoniopropionate (DMSP). Yet most of what is known about these interactions has been derived from culture-based laboratory studies. To investigate temporal and spatial co-occurrence patterns between members of the MRG and DMSP-producing phytoplankton we analysed 16S and 18S rRNA gene amplicon sequence variants (ASVs) derived from 5 years of monthly samples from seven environmentally distinct Australian oceanographic time-series. The MRG and DMSP-producer communities often displayed contemporaneous seasonality, which was greater in subtropical and temperate environments compared to tropical environments. The relative abundance of both groups varied latitudinally, displaying a poleward increase, peaking (MRG at 33% of total bacteria, DMSP producers at 42% of eukaryotic phototrophs) during recurrent spring-summer phytoplankton blooms in the most temperate site (Maria Island, Tasmania). Network analysis identified 20,140 significant positive correlations between MRG ASVs and DMSP producers and revealed that MRGs exhibit significantly stronger correlations to high DMSP producers relative to other DMSP-degrading bacteria (Pelagibacter, SAR86 and Actinobacteria). By utilising the power of a continental network of oceanographic time-series, this study provides in situ confirmation of interactions found in laboratory studies and demonstrates that the ecological dynamics of an important group of marine bacteria are shaped by the production of an abundant and biogeochemically significant organosulfur compound.

11.
Mol Ecol ; 30(1): 343-360, 2021 01.
Artigo em Inglês | MEDLINE | ID: mdl-33141992

RESUMO

Dinoflagellates of the family Symbiodiniaceae form mutualistic symbioses with marine invertebrates such as reef-building corals, but also inhabit reef environments as free-living cells. Most coral species acquire Symbiodiniaceae horizontally from the surrounding environment during the larval and/or recruitment phase, however the phylogenetic diversity and ecology of free-living Symbiodiniaceae on coral reefs is largely unknown. We coupled environmental DNA sequencing and genus-specific qPCR to resolve the community structure and cell abundances of free-living Symbiodiniaceae in the water column, sediment, and macroalgae and compared these to coral symbionts. Sampling was conducted at two time points, one of which coincided with the annual coral spawning event when recombination between hosts and free-living Symbiodiniaceae is assumed to be critical. Amplicons of the internal transcribed spacer (ITS2) region were assigned to 12 of the 15 Symbiodiniaceae genera or genera-equivalent lineages. Community compositions were separated by habitat, with water samples containing a high proportion of sequences corresponding to coral symbionts of the genus Cladocopium, potentially as a result of cell expulsion from in hospite populations. Sediment-associated Symbiodiniaceae communities were distinct, potentially due to the presence of exclusively free-living species. Intriguingly, macroalgal surfaces displayed the highest cell abundances of Symbiodiniaceae, suggesting a key role for macroalgae in ensuring the ecological success of corals through maintenance of a continuum between environmental and symbiotic populations of Symbiodiniaceae.


Assuntos
Antozoários , Dinoflagellida , Animais , Antozoários/genética , Recifes de Corais , Dinoflagellida/genética , Ecossistema , Filogenia
12.
BMC Genomics ; 21(1): 695, 2020 Oct 06.
Artigo em Inglês | MEDLINE | ID: mdl-33023476

RESUMO

BACKGROUND: The genome of Vibrionaceae bacteria, which consists of two circular chromosomes, is replicated in a highly ordered fashion. In fast-growing bacteria, multifork replication results in higher gene copy numbers and increased expression of genes located close to the origin of replication of Chr 1 (ori1). This is believed to be a growth optimization strategy to satisfy the high demand of essential growth factors during fast growth. The relationship between ori1-proximate growth-related genes and gene expression during fast growth has been investigated by many researchers. However, it remains unclear which other gene categories that are present close to ori1 and if expression of all ori1-proximate genes is increased during fast growth, or if expression is selectively elevated for certain gene categories. RESULTS: We calculated the pangenome of all complete genomes from the Vibrionaceae family and mapped the four pangene categories, core, softcore, shell and cloud, to their chromosomal positions. This revealed that core and softcore genes were found heavily biased towards ori1, while shell genes were overrepresented at the opposite part of Chr 1 (i.e., close to ter1). RNA-seq of Aliivibrio salmonicida and Vibrio natriegens showed global gene expression patterns that consistently correlated with chromosomal distance to ori1. Despite a biased gene distribution pattern, all pangene categories contributed to a skewed expression pattern at fast-growing conditions, whereas at slow-growing conditions, softcore, shell and cloud genes were responsible for elevated expression. CONCLUSION: The pangene categories were non-randomly organized on Chr 1, with an overrepresentation of core and softcore genes around ori1, and overrepresentation of shell and cloud genes around ter1. Furthermore, we mapped our gene distribution data on to the intracellular positioning of chromatin described for V. cholerae, and found that core/softcore and shell/cloud genes appear enriched at two spatially separated intracellular regions. Based on these observations, we hypothesize that there is a link between the genomic location of genes and their cellular placement.


Assuntos
Cromossomos Bacterianos/genética , Genes Bacterianos , Vibrionaceae/genética , Mapeamento Cromossômico/métodos , Vibrionaceae/citologia
13.
Artigo em Inglês | MEDLINE | ID: mdl-32582656

RESUMO

Diatoms are photosynthetic microeukaryotes that dominate phytoplankton populations and have increasing applicability in biotechnology. Uncovering their complex biology and elevating strains to commercial standards depends heavily on robust genetic engineering tools. However, engineering microalgal genomes predominantly relies on random integration of transgenes into nuclear DNA, often resulting in detrimental "position-effects" such as transgene silencing, integration into transcriptionally-inactive regions, and endogenous sequence disruption. With the recent development of extrachromosomal transgene expression via independent episomes, it is timely to investigate both strategies at the phenotypic and genomic level. Here, we engineered the model diatom Phaeodactylum tricornutum to produce the high-value heterologous monoterpenoid geraniol, which, besides applications as fragrance and insect repellent, is a key intermediate of high-value pharmaceuticals. Using high-throughput phenotyping we confirmed the suitability of episomes for synthetic biology applications and identified superior geraniol-yielding strains following random integration. We used third generation long-read sequencing technology to generate a complete analysis of all transgene integration events including their genomic locations and arrangements associated with high-performing strains at a genome-wide scale with subchromosomal detail, never before reported in any microalga. This revealed very large, highly concatenated insertion islands, offering profound implications on diatom functional genetics and next generation genome editing technologies, and is key for developing more precise genome engineering approaches in diatoms, including possible genomic safe harbour locations to support high transgene expression for targeted integration approaches. Furthermore, we have demonstrated that exogenous DNA is not integrated inadvertently into the nuclear genome of extrachromosomal-expression clones, an important characterisation of this novel engineering approach that paves the road to synthetic biology applications.

14.
Front Plant Sci ; 11: 279, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32256509

RESUMO

Mankind has recognized the value of land plants as renewable sources of food, medicine, and materials for millennia. Throughout human history, agricultural methods were continuously modified and improved to meet the changing needs of civilization. Today, our rapidly growing population requires further innovation to address the practical limitations and serious environmental concerns associated with current industrial and agricultural practices. Microalgae are a diverse group of unicellular photosynthetic organisms that are emerging as next-generation resources with the potential to address urgent industrial and agricultural demands. The extensive biological diversity of algae can be leveraged to produce a wealth of valuable bioproducts, either naturally or via genetic manipulation. Microalgae additionally possess a set of intrinsic advantages, such as low production costs, no requirement for arable land, and the capacity to grow rapidly in both large-scale outdoor systems and scalable, fully contained photobioreactors. Here, we review technical advancements, novel fields of application, and products in the field of algal biotechnology to illustrate how algae could present high-tech, low-cost, and environmentally friendly solutions to many current and future needs of our society. We discuss how emerging technologies such as synthetic biology, high-throughput phenomics, and the application of internet of things (IoT) automation to algal manufacturing technology can advance the understanding of algal biology and, ultimately, drive the establishment of an algal-based bioeconomy.

15.
Cells ; 9(3)2020 03 05.
Artigo em Inglês | MEDLINE | ID: mdl-32151094

RESUMO

Microalgae exhibit great potential for recombinant therapeutic protein production, due to lower production costs, immunity to human pathogens, and advanced genetic toolkits. However, a fundamental aspect to consider for recombinant biopharmaceutical production is the presence of correct post-translational modifications. Multiple recent studies focusing on glycosylation in microalgae have revealed unique species-specific patterns absent in humans. Glycosylation is particularly important for protein function and is directly responsible for recombinant biopharmaceutical immunogenicity. Therefore, it is necessary to fully characterise this key feature in microalgae before these organisms can be established as industrially relevant microbial biofactories. Here, we review the work done to date on production of recombinant biopharmaceuticals in microalgae, experimental and computational evidence for N- and O-glycosylation in diverse microalgal groups, established approaches for glyco-engineering, and perspectives for their application in microalgal systems. The insights from this review may be applied to future glyco-engineering attempts to humanize recombinant therapeutic proteins and to potentially obtain cheaper, fully functional biopharmaceuticals from microalgae.


Assuntos
Produtos Biológicos/metabolismo , Microalgas/metabolismo , Processamento de Proteína Pós-Traducional/fisiologia , Proteínas Recombinantes/biossíntese , Glicosilação , Humanos , Especificidade da Espécie
16.
FEMS Microbiol Ecol ; 96(5)2020 05 01.
Artigo em Inglês | MEDLINE | ID: mdl-32221598

RESUMO

Different organs of a host represent distinct microenvironments resulting in the establishment of multiple discrete bacterial communities within a host. These discrete bacterial communities can also vary according to geographical location. For the Pacific oyster, Crassostrea gigas, the factors governing bacterial diversity and abundance of different oyster microenvironments are poorly understood. In this study, the factors shaping bacterial abundance, diversity and composition associated with the C. gigas mantle, gill, adductor muscle and digestive gland were characterised using 16S (V3-V4) rRNA amplicon sequencing across six discrete estuaries. Both location and tissue-type, with tissue-type being the stronger determinant, were factors driving bacterial community composition. Bacterial communities from wave-dominated estuaries had similar compositions and higher bacterial abundance despite being geographically distant from one another, possibly indicating that functional estuarine morphology characteristics are a factor shaping the oyster bacterial community. Despite the bacterial community heterogeneity, examinations of the core bacterial community identified Spirochaetaceae bacteria as conserved across all sites and samples. Whereas members of the Vulcaniibacterium, Spirochaetaceae and Margulisbacteria, and Polynucleobacter were regionally conserved members of the digestive gland, gill and mantle bacterial communities, respectively. This indicates that baseline bacterial community profiles for specific locations are necessary when investigating bacterial communities in oyster health.


Assuntos
Crassostrea , Microbiota , Animais , Bactérias/genética , Brânquias , RNA Ribossômico 16S/genética
17.
Environ Microbiol ; 22(4): 1294-1309, 2020 04.
Artigo em Inglês | MEDLINE | ID: mdl-31997503

RESUMO

Symbiodiniaceae are a diverse family of marine dinoflagellates, well known as coral endosymbionts. Isolation and in vitro culture of Symbiodiniaceae strains for physiological studies is a widely adopted tool, especially in the context of understanding how environmental stress perturbs Symbiodiniaceae cell functioning. While the bacterial microbiomes of corals often correlate with coral health, the bacterial communities co-cultured with Symbiodiniaceae isolates have been largely overlooked, despite the potential of bacteria to significantly influence the emergent physiological properties of Symbiodiniaceae cultures. We examined the physiological response to heat stress by Symbiodiniaceae isolates (spanning three genera) with well-described thermal tolerances, and combined these observations with matched changes in bacterial composition and abundance through 16S rRNA metabarcoding. Under thermal stress, there were Symbiodiniaceae strain-specific changes in maximum quantum yield of photosystem II (proxy for health) and growth rates that were accompanied by changes in the relative abundance of multiple Symbiodiniaceae-specific bacteria. However, there were no Symbiodiniaceae-independent signatures of bacterial community reorganisation under heat stress. Notably, the thermally tolerant Durusdinium trenchii (ITS2 major profile D1a) had the most stable bacterial community under heat stress. Ultimately, this study highlights the complexity of Symbiodiniaceae-bacteria interactions and provides a first step towards uncoupling their relative contributions towards Symbiodiniaceae physiological functioning.


Assuntos
Dinoflagellida/microbiologia , Resposta ao Choque Térmico , Microbiota , Animais , Bactérias/genética , Dinoflagellida/genética , RNA Ribossômico 16S
18.
Environ Microbiol ; 22(5): 1675-1687, 2020 05.
Artigo em Inglês | MEDLINE | ID: mdl-31943674

RESUMO

The intimate relationship between scleractinian corals and their associated microorganisms is fundamental to healthy coral reef ecosystems. Coral-associated microbes (Symbiodiniaceae and other protists, bacteria, archaea, fungi and viruses) support coral health and resilience through metabolite transfer, inter-partner signalling, and genetic exchange. However, much of our understanding of the coral holobiont relationship has come from studies that have investigated either coral-Symbiodiniaceae or coral-bacteria interactions in isolation, while relatively little research has focused on other ecological and metabolic interactions potentially occurring within the coral multi-partner symbiotic network. Recent evidences of intimate coupling between phytoplankton and bacteria have demonstrated that obligate resource exchange between partners fundamentally drives their ecological success. Here, we posit that similar associations with bacterial consortia regulate Symbiodiniaceae productivity and are in turn central to the health of corals. Indeed, we propose that this bacteria-Symbiodiniaceae-coral relationship underpins the coral holobiont's nutrition, stress tolerance and potentially influences the future survival of coral reef ecosystems under changing environmental conditions. Resolving Symbiodiniaceae-bacteria associations is therefore a logical next step towards understanding the complex multi-partner interactions occurring in the coral holobiont.


Assuntos
Antozoários/microbiologia , Archaea/metabolismo , Bactérias/metabolismo , Dinoflagellida/microbiologia , Fungos/metabolismo , Simbiose/fisiologia , Animais , Bactérias/genética , Recifes de Corais , Ecossistema , Fungos/genética , Redes e Vias Metabólicas
19.
Water Res ; 171: 115405, 2020 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-31887546

RESUMO

While the significance of Arcobacter in clinical settings grows, the ecological dynamics of potentially pathogenic Arcobacter in coastal marine environments remains unclear. In this study, we monitored the temporal dynamics of Arcobacter at an urban beach subject to significant stormwater input and wet weather sewer overflows (WWSO). Weekly monitoring of bacterial communities over 24 months using 16S rRNA amplicon sequencing revealed large, intermittent peaks in the relative abundance of Arcobacter. Quantitative PCR was subsequently employed to track absolute abundance of Arcobacter 23S rRNA gene copies, revealing peaks in abundance reaching up to 108 gene copies L-1, with these increases statistically correlated with stormwater and WWSO intrusion. Notably, peaks in Arcobacter abundance were poorly correlated with enterococci plate counts, and remained elevated for one week following heavy rainfall. Using oligotyping we discriminated single nucleotide variants (SNVs) within the Arcobacter population, revealing 10 distinct clusters of SNVs that we defined as Arcobacter "ecotypes", with each displaying distinct temporal dynamics. The most abundant ecotype during stormwater and modelled WWSO events displayed 16S rRNA sequence similarity to A. cryaerophilius, a species previously implicated in human illness. Our findings highlight the diverse environmental drivers of Arcobacter abundance within coastal settings and point to a potentially important, yet overlooked exposure risk of these potential pathogens to humans.


Assuntos
Arcobacter , Bactérias , DNA Bacteriano , Humanos , RNA Ribossômico 16S , Reação em Cadeia da Polimerase em Tempo Real
20.
Sci Total Environ ; 704: 135279, 2020 Feb 20.
Artigo em Inglês | MEDLINE | ID: mdl-31791792

RESUMO

Recent developed sequencing techniques have resulted in a new and unprecedented way to study biological wastewater treatment, in which most organisms are uncultivable. This review provides (i) an insight on state-of-the-art sequencing techniques and their limitations; (ii) a critical assessment of the microbial community in biological reactor and biofouling layer in a membrane bioreactor (MBR). The data from high-throughput sequencing has been used to infer microbial growth conditions and metabolisms of microorganisms present in MBRs at the time of sampling. These data shed new insight to two fundamental questions about a microbial community in the MBR process namely the microbial composition (who are they?) and the functions of each specific microbial assemblage (what are their function?). The results to date also highlight the complexity of the microbial community growing on MBRs. Environmental conditions are dynamic and diverse, and can influence the diversity and structural dynamics of any given microbial community for wastewater treatment. The benefits of understanding the structure of microbial communities on three major aspects of the MBR process (i.e. nutrient removal, biofouling control, and micropollutant removal) were symmetrically delineated. This review also indicates that the deployment of microbial community analysis for a practical engineering context, in terms of process design and system optimization, can be further realized.


Assuntos
Reatores Biológicos/microbiologia , Eliminação de Resíduos Líquidos , Águas Residuárias/microbiologia , Sequência de Bases , Microbiota
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA