Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
J Biol Chem ; 294(52): 19967-19977, 2019 12 27.
Artigo em Inglês | MEDLINE | ID: mdl-31740579

RESUMO

RNA degradation is one of several ways for organisms to regulate gene expression. In bacteria, the removal of two terminal phosphate moieties as orthophosphate (Bacillus subtilis) or pyrophosphate (Escherichia coli) triggers ribonucleolytic decay of primary transcripts by 5'-monophosphate-dependent ribonucleases. In the soil-dwelling firmicute species B. subtilis, the RNA pyrophosphohydrolase BsRppH, a member of the Nudix family, triggers RNA turnover by converting primary transcripts to 5'-monophospate RNA. In addition to BsRppH, a source of redundant activity in B. subtilis has been proposed. Here, using recombinant protein expression and in vitro enzyme assays, we provide evidence for several additional RNA pyrophosphohydrolases, among them MutT, NudF, YmaB, and YvcI in B. subtilis We found that in vitro, YvcI converts RNA 5'-di- and triphosphates into monophosphates in the presence of manganese at neutral to slightly acidic pH. It preferred G-initiating RNAs and required at least one unpaired nucleotide at the 5'-end of its substrates, with the 5'-terminal nucleotide determining whether primarily ortho- or pyrophosphate is released. Exchanges of catalytically important glutamate residues in the Nudix motif impaired or abolished the enzymatic activity of YvcI. In summary, the results of our extensive in vitro biochemical characterization raise the possibility that YvcI is an additional RNA pyrophosphohydrolase in B. subtilis.


Assuntos
Bacillus subtilis/enzimologia , Proteínas de Bactérias/metabolismo , Pirofosfatases/metabolismo , RNA Bacteriano/metabolismo , Proteínas de Bactérias/genética , Biocatálise , Difosfatos/metabolismo , Concentração de Íons de Hidrogênio , Manganês/química , Mutagênese Sítio-Dirigida , Conformação de Ácido Nucleico , Pirofosfatases/genética , Proteínas Recombinantes/biossíntese , Proteínas Recombinantes/genética , Especificidade por Substrato
2.
Cell Rep ; 24(7): 1890-1901.e8, 2018 08 14.
Artigo em Inglês | MEDLINE | ID: mdl-30110644

RESUMO

The ubiquitous coenzyme nicotinamide adenine dinucleotide (NAD) decorates various RNAs in different organisms. In the proteobacterium Escherichia coli, the NAD-cap confers stability against RNA degradation. To date, NAD-RNAs have not been identified in any other bacterial microorganism. Here, we report the identification of NAD-RNA in the firmicute Bacillus subtilis. In the late exponential growth phase, predominantly mRNAs are NAD modified. NAD is incorporated de novo into RNA by the cellular RNA polymerase using non-canonical transcription initiation. The incorporation efficiency depends on the -1 position of the promoter but is independent of sigma factors or mutations in the rifampicin binding pocket. RNA pyrophosphohydrolase BsRppH is found to decap NAD-RNA. In vitro, the decapping activity is facilitated by manganese ions and single-stranded RNA 5' ends. Depletion of BsRppH influences the gene expression of ∼13% of transcripts in B. subtilis. The NAD-cap stabilizes RNA against 5'-to-3'-exonucleolytic decay by RNase J1.


Assuntos
Bacillus subtilis/genética , Regulação Bacteriana da Expressão Gênica , NAD/metabolismo , Capuzes de RNA/genética , RNA Bacteriano/genética , Bacillus subtilis/metabolismo , Escherichia coli/genética , Escherichia coli/metabolismo , Manganês/metabolismo , Conformação de Ácido Nucleico , Monoéster Fosfórico Hidrolases/genética , Monoéster Fosfórico Hidrolases/metabolismo , Capuzes de RNA/metabolismo , Estabilidade de RNA , RNA Bacteriano/metabolismo , Ribonucleases/genética , Ribonucleases/metabolismo , Fator sigma/genética , Fator sigma/metabolismo , Transcrição Gênica
3.
Oncoimmunology ; 6(2): e1274477, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28344890

RESUMO

Kynurenine formation by tryptophan-catabolic indoleamine-2,3-dioxygenase 1 (IDO1) plays a key role in tumor immune evasion and inhibition of IDO1 is efficacious in preclinical models of breast cancer. As the response of breast cancer to immune checkpoint inhibitors may be limited, a better understanding of the expression of additional targetable immunomodulatory pathways is of importance. We therefore investigated the regulation of IDO1 expression in different breast cancer subtypes. We identified estrogen receptor α (ER) as a negative regulator of IDO1 expression. Serum kynurenine levels as well as tumoral IDO1 expression were lower in patients with ER-positive than ER-negative tumors and an inverse relationship between IDO1 and estrogen receptor mRNA was observed across 14 breast cancer data sets. Analysis of whole genome bisulfite sequencing, 450k, MassARRAY and pyrosequencing data revealed that the IDO1 promoter is hypermethylated in ER-positive compared with ER-negative breast cancer. Reduced induction of IDO1 was also observed in human ER-positive breast cancer cell lines. IDO1 induction was enhanced upon DNA demethylation in ER-positive but not in ER-negative cells and methylation of an IDO1 promoter construct reduced IDO1 expression, suggesting that enhanced methylation of the IDO1 promoter suppresses IDO1 in ER-positive breast cancer. The association of ER overexpression with epigenetic downregulation of IDO1 appears to be a particular feature of breast cancer as IDO1 was not suppressed by IDO1 promoter hypermethylation in the presence of high ER expression in cervical or endometrial cancer.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA