Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Genes (Basel) ; 15(6)2024 Jun 20.
Artigo em Inglês | MEDLINE | ID: mdl-38927754

RESUMO

Chickpea (Cicer arietinum) is a major food legume providing high quality nutrition, especially in developing regions. Chickpea wilt (Fusarium oxysporum f. sp. ciceris) causes significant annual losses. Integrated disease management of Fusarium wilt is supported by resistant varieties. Relatively few resistance genes are known so there is value in exploring genetic resources in chickpea wild relatives. This study investigates the inheritance of Fusarium wilt resistance (race 2) in recombinant inbred lines (RILs) from a cross between a cultivated susceptible chickpea variety (Gokce) and a wild resistant Cicer reticulatum line (Kayat-077). RILs, parents, resistant and susceptible tester lines were twice grown in the greenhouse with inoculation and disease symptoms scored. DNA was extracted from dried leaves and individuals were single nucleotide polymorphism (SNP) genotyped. SNPs were placed on the reference chickpea genome and quantitative trait locus (QTL) mapping was performed. Significant QTL regions were examined using PulseDB to identify candidate genes. The results showed the segregation of Fusarium wilt resistance conforming to a single gene inheritance. One significant QTL was found at the start of chromosome 8, containing 138 genes, three of which were disease-resistance candidates for chickpea breeding.


Assuntos
Mapeamento Cromossômico , Cicer , Resistência à Doença , Fusarium , Doenças das Plantas , Polimorfismo de Nucleotídeo Único , Locos de Características Quantitativas , Cicer/genética , Cicer/microbiologia , Cicer/imunologia , Fusarium/patogenicidade , Resistência à Doença/genética , Doenças das Plantas/genética , Doenças das Plantas/microbiologia , Doenças das Plantas/imunologia , Mapeamento Cromossômico/métodos , Melhoramento Vegetal/métodos
2.
Genes (Basel) ; 14(2)2023 01 26.
Artigo em Inglês | MEDLINE | ID: mdl-36833243

RESUMO

Chickpea (Cicer arietinum) is a globally important food legume but its yield is negatively impacted by the fungal pathogen Ascochyta blight (Ascochyta rabiei) causing necrotic lesions leading to plant death. Past studies have found that Ascochyta resistance is polygenic. It is important to find new resistance genes from the wider genepool of chickpeas. This study reports the inheritance of Ascochyta blight resistance of two wide crosses between the cultivar Gokce and wild chickpea accessions of C. reticulatum and C. echinospermum under field conditions in Southern Turkey. Following inoculation, infection damage was scored weekly for six weeks. The families were genotyped for 60 SNPs mapped to the reference genome for quantitative locus (QTL) mapping of resistance. Family lines showed broad resistance score distributions. A late responding QTL on chromosome 7 was identified in the C. reticulatum family and three early responding QTLs on chromosomes 2, 3, and 6 in the C. echinospermum family. Wild alleles mostly showed reduced disease severity, while heterozygous genotypes were most diseased. Interrogation of 200k bp genomic regions of the reference CDC Frontier genome surrounding QTLs identified nine gene candidates involved in disease resistance and cell wall remodeling. This study identifies new candidate chickpea Ascochyta blight resistance QTLs of breeding potential.


Assuntos
Cicer , Humanos , Mapeamento Cromossômico , Cicer/genética , Resistência à Doença/genética , Melhoramento Vegetal , Locos de Características Quantitativas , Ascomicetos
3.
Curr Genomics ; 21(3): 212-223, 2020 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-33071615

RESUMO

BACKGROUND: Cicer reticulatum L. is the wild progenitor of chickpea Cicer arietinum L., the fourth most important pulse crop in the world. Iron (Fe) and zinc (Zn) are vital micronutrients that play crucial roles in sustaining life by acting as co-factors for various proteins. AIMS AND OBJECTIVES: In order to improve micronutrient-dense chickpea lines, this study aimed to investigate variability and detect DNA markers associated with Fe and Zn concentrations in the seeds of 73 cultivated (C. arietinum L.) and 107 C. reticulatum genotypes. METHODS: A set of 180 accessions was genotyped using 20,868 single nucleotide polymorphism (SNP) markers obtained from genotyping by sequencing analysis. RESULTS: The results revealed substantial variation in the seed Fe and Zn concentration of the surveyed population. Using STRUCTURE software, the population structure was divided into two groups according to the principal component analysis and neighbor-joining tree analysis. A total of 23 and 16 associated SNP markers related to Fe and Zn concentrations, respectively were identified in TASSEL software by the mixed linear model method. Significant SNP markers found in more than two environments were accepted as more reliable than those that only existed in a single environment. CONCLUSION: The identified markers can be used in marker-assisted selection in chickpea breeding programs for the improvement of seed Fe and Zn concentrations in the chickpea.

4.
Genomics ; 112(2): 1633-1642, 2020 03.
Artigo em Inglês | MEDLINE | ID: mdl-31669504

RESUMO

Chickpea (Cicer arietinum L.) is one of the oldest and most important pulse crops grown and consumed all over the world, especially in developing countries. Magnesium (Mg) and manganese (Mn) are essential plant nutrients in terms of human health and many health problems arise in their deficiencies. The objectives of this study were to characterize genetic variability in the seed Mg and Mn concentrations and identify single nucleotide polymorphism (SNP) markers associated with these traits in 107 Cicer reticulatum and 73C. arietinum genotypes, using a genome wide association study. The genotypes were grown in four environments, characterized for Mg and Mn concentrations, and genotyped with 121,841 SNP markers. The population showed three-fold and two-fold variation for the Mg and Mn concentrations, respectively. The population structure was identified using STRUCTURE software, which divided 180 genotypes into two (K = 2) groups. Principal component analysis and neighbor joining tree analysis confirmed the results of STRUCTURE. A total of 4 and 16 consistent SNPs were detected for the Mg and Mn concentrations, respectively. The identified markers can be utilized in breeding of chickpea to increase Mg and Mn levels in order to improve human and livestock nutrition.


Assuntos
Cicer/genética , Magnésio/metabolismo , Manganês/metabolismo , Polimorfismo de Nucleotídeo Único , Locos de Características Quantitativas , Cicer/metabolismo , Genes de Plantas , Característica Quantitativa Herdável , Sementes/genética , Sementes/metabolismo
5.
Genomics ; 111(6): 1873-1881, 2019 12.
Artigo em Inglês | MEDLINE | ID: mdl-30594584

RESUMO

Due to its high nutritional value, chickpea is one of the most important and cost-effective legumes for human diet. Nutrient elements, such as Cu, P, K have numerous essential functions for the human metabolism. In this study, association mapping of loci linked to the seed Cu, P and K concentrations were performed on a population consisting of 107 Cicer reticulatum and 73 Cicer arietinum individuals in four environments (two locations x two years). A total of 121,840 SNPs were genotyped across 180 individuals by GBS analysis. The association mapping between the SNP markers and the seed Cu, P, K concentrations were identified and eight SNPs were found to be significantly associated with variations in three nutrient elements in more than two environments This research suggests that association mapping is a useful methodology for the identification of loci controlling the Cu, P and K uptake in chickpea seeds for further association mapping, molecular breeding, and marker-assisted selection and plant breeding studies and provides a broader understanding of the relationship between the investigated Cicer species and the effects of environmental conditions.


Assuntos
Cicer , Cobre/metabolismo , Loci Gênicos , Fósforo/metabolismo , Polimorfismo de Nucleotídeo Único , Potássio/metabolismo , Sementes , Mapeamento Cromossômico , Cicer/genética , Cicer/metabolismo , Ligação Genética , Marcadores Genéticos , Genótipo , Sementes/genética , Sementes/metabolismo
6.
PLoS One ; 13(1): e0191375, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29351563

RESUMO

BACKGROUND: Lentil (Lens culinaris ssp. culinaris Medikus) is a diploid (2n = 2x = 14), self-pollinating grain legume with a haploid genome size of about 4 Gbp and is grown throughout the world with current annual production of 4.9 million tonnes. MATERIALS AND METHODS: A consensus map of lentil (Lens culinaris ssp. culinaris Medikus) was constructed using three different lentils recombinant inbred line (RIL) populations, including "CDC Redberry" x "ILL7502" (LR8), "ILL8006" x "CDC Milestone" (LR11) and "PI320937" x "Eston" (LR39). RESULTS: The lentil consensus map was composed of 9,793 DArT markers, covered a total of 977.47 cM with an average distance of 0.10 cM between adjacent markers and constructed 7 linkage groups representing 7 chromosomes of the lentil genome. The consensus map had no gap larger than 12.67 cM and only 5 gaps were found to be between 12.67 cM and 6.0 cM (on LG3 and LG4). The localization of the SNP markers on the lentil consensus map were in general consistent with their localization on the three individual genetic linkage maps and the lentil consensus map has longer map length, higher marker density and shorter average distance between the adjacent markers compared to the component linkage maps. CONCLUSION: This high-density consensus map could provide insight into the lentil genome. The consensus map could also help to construct a physical map using a Bacterial Artificial Chromosome library and map based cloning studies. Sequence information of DArT may help localization of orientation scaffolds from Next Generation Sequencing data.


Assuntos
Lens (Planta)/genética , Mapeamento Cromossômico/métodos , Sequência Consenso , DNA de Plantas/genética , Ligação Genética , Genoma de Planta , Polimorfismo de Nucleotídeo Único
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA