RESUMO
We have developed a genetically encoded bioluminescent indicator for the Na(+) channel, in which Na(+)-sensitive Gaussia luciferase is fused with the voltage-gated Na(+) channel. This indicator is capable of detecting Na(+) flow through the pores of Na(+) channels. Because of high sensitivity and low background in luminescence assays, the absence of toxicity, and a wide linear dynamic range, this luciferase can be used to generate a novel, genetically encoded Na(+) channel indicator. It may provide a high-throughput screening system for drug discovery against Na(+) channels, which should be useful in controlling lethal cardiac arrhythmias, epileptic seizures, and intolerable pain associated with terminal stages of cancer. It may also offer a system for monitoring the Na(+) channel activity in living cells, which may be useful in illuminating neuronal activity in vivo.
Assuntos
Engenharia Genética/métodos , Canais de Sódio/química , Canais de Sódio/genética , Animais , Química Farmacêutica/métodos , Crustáceos , Desenho de Fármacos , Humanos , Ativação do Canal Iônico/efeitos dos fármacos , Luciferases/química , Luminescência , Potenciais da Membrana , Músculo Esquelético , Técnicas de Patch-Clamp , Ratos , Sódio/química , Canais de Sódio/fisiologiaRESUMO
We recently reported that physiological concentrations of 17beta-estradiol partially down-regulate cardiac rapidly-activating delayed rectifier K(+) currents (hERG currents) independently of estrogen-receptor signaling. To determine if other estrogens have the same effect as that of 17beta-estradiol, we investigated receptor-independent effects of estrone, estrone 3-sulfate, and estriol on hERG currents in patch-clamped estrogen-negative HEK293 cells. Only estrone 3-sulfate partially suppressed hERG currents in a receptor-independent manner by modifying the gating. The concentration-dependence of estrone 3-sulfate revealed that physiological levels of circulating estrone 3-sulfate can modulate hERG currents to the maximal extent in both women and men at any age.
Assuntos
Estrona/análogos & derivados , Canais de Potássio Éter-A-Go-Go/fisiologia , Receptores de Estrogênio/fisiologia , Linhagem Celular , Relação Dose-Resposta a Droga , Canal de Potássio ERG1 , Estradiol/farmacologia , Antagonistas de Estrogênios/farmacologia , Estrogênios/química , Estrogênios/farmacologia , Estrona/química , Estrona/farmacologia , Canais de Potássio Éter-A-Go-Go/genética , Expressão Gênica , Humanos , Potenciais da Membrana/efeitos dos fármacos , Potenciais da Membrana/fisiologia , Estrutura Molecular , Técnicas de Patch-Clamp , Receptores de Estrogênio/antagonistas & inibidoresRESUMO
Co-assembly of KCNQ1 with different accessory, or beta, subunits that are members of the KCNE family results in potassium (K+) channels that conduct functionally distinct currents. The alpha subunit KCNQ1 conducts a slowly activated delayed rectifier K+ current (IKs), a major contributor to cardiac repolarization, when co-assembled with KCNE1 and channels that favor the open state when co-assembled with either KCNE2 or KCNE3. In the heart, stimulation of the sympathetic nervous system enhances IKs. A macromolecular signaling complex of the IKs channel including the targeting protein Yotiao coordinates up or downregulation of channel activity by protein kinase A (PKA) phosphorylation and dephosphorylation of molecules in the complex. beta-adrenergic receptor mediated IKs upregulation, a functional consequence of PKA phosphorylation of the KCNQ1 amino terminus (N-T), requires co-expression of KCNQ1/Yotiao with KCNE1. Here, we report that co-expression of KCNE2, like KCNE1, confers a functional channel response to KCNQ1 phosphorylation, but co-expression of KCNE3 does not. Amino acid sequence comparison among the KCNE peptides, and KCNE1 truncation experiments, reveal a segment of the predicted intracellular KCNE1 carboxyl terminus (C-T) that is necessary for functional transduction of PKA phosphorylated KCNQ1. Moreover, chimera analysis reveals a region of KCNE1 sufficient to confer cAMP-dependent functional regulation upon the KCNQ1_KCNE3_Yotiao channel. The property of specific beta subunits to transduce post-translational regulation of alpha subunits of ion channels adds another dimension to our understanding molecular mechanisms underlying the diversity of regulation of native K+ channels.
Assuntos
Subunidades Catalíticas da Proteína Quinase Dependente de AMP Cíclico/metabolismo , Canal de Potássio KCNQ1/metabolismo , Canais de Potássio de Abertura Dependente da Tensão da Membrana/metabolismo , Proteínas de Ancoragem à Quinase A/metabolismo , Sequência de Aminoácidos , Animais , Células CHO , Cricetinae , Cricetulus , AMP Cíclico/metabolismo , Humanos , Canal de Potássio KCNQ1/efeitos dos fármacos , Canal de Potássio KCNQ1/genética , Potenciais da Membrana , Dados de Sequência Molecular , Mutagênese Sítio-Dirigida , Ácido Okadáico/farmacologia , Fosforilação , Canais de Potássio de Abertura Dependente da Tensão da Membrana/efeitos dos fármacos , Canais de Potássio de Abertura Dependente da Tensão da Membrana/genética , Estrutura Terciária de Proteína , Fatores de Tempo , TransfecçãoRESUMO
Genetically encoded bioluminescent indicators for intracellular Ca2+ are described here with CaM-M13 interaction-induced complementation of split Renilla luciferase. The Ca2+-induced interaction between CaM and M13 leads to complementation of the N- and C-terminal halves of split Renilla luciferase in living cells. This intramolecular interaction results in the spontaneous and simultaneous emission of bioluminescence split Renilla luciferase. This is how intracellular Ca2+ is illuminated with the intramolecular complementation of split Renilla luciferase. The Ca2+-dependent spontaneous and simultaneous emission of bioluminescence promises to reveal Ca2+ dynamics in living cells, and also in vivo using the present indicators.
Assuntos
Cálcio/análise , Luciferases de Renilla , Calmodulina , Linhagem Celular Tumoral , Humanos , Proteínas Luminescentes , Técnicas de Sonda Molecular , Proteínas Recombinantes de FusãoRESUMO
In this study, a genetically encoded bioluminescent indicator for ERK2 dimer was developed with the split Renilla luciferase complementation method, in which the formation of ERK2 dimer induces a spontaneous emission of bioluminescence in living cells. In response to extracellular stimuli, such as epidermal growth factor (EGF) or 17beta-estradiol (E2), extracellular signal-regulated kinase 2 (ERK2) is phosphorylated by its upstream kinase MEK, and also phosphorylates its substrates in various regions of the cell, including the nucleus. Phosphorylated ERK2 is led to form its dimer, thereby transporting itself into the nucleus. We demonstrated with the indicator that stimulation with EGF or E2 induces the formation of ERK2 dimer in living MCF-7 cells. The dynamics of this dimer formation was examined and discussed.
Assuntos
Proteína Quinase 1 Ativada por Mitógeno/genética , Linhagem Celular Tumoral , Meios de Cultura Livres de Soro , Dimerização , Fator de Crescimento Epidérmico/metabolismo , Estradiol/farmacologia , Humanos , Luminescência , Proteína Quinase 1 Ativada por Mitógeno/química , Proteína Quinase 1 Ativada por Mitógeno/metabolismo , FosforilaçãoRESUMO
Ginseng root is one of the most popular herbs throughout the world and is believed to be a panacea and to promote longevity. It has been used as a medicine to protect against cardiac ischemia, a major cause of death in the West. We have previously demonstrated that ginsenoside Re, a main phytosterol of Panax ginseng, inhibits Ca(2+) accumulation in mitochondria during cardiac ischemia/reperfusion, which is attributable to nitric oxide (NO)-induced Ca(2+) channel inhibition and K(+) channel activation in cardiac myocytes. In this study, we provide compelling evidence that ginsenoside Re activates endothelial NO synthase (eNOS) to release NO, resulting in activation of the slowly activating delayed rectifier K(+) current. The eNOS activation occurs via a nongenomic pathway of each of androgen receptor, estrogen receptor-alpha, and progesterone receptor, in which c-Src, phosphoinositide 3-kinase, Akt, and eNOS are sequentially activated. However, ginsenoside Re does not stimulate proliferation of androgen-responsive LNCaP cells and estrogen-responsive MCF-7 cells, implying that ginsenoside Re does not activate a genomic pathway of sex hormone receptors. Fluorescence resonance energy transfer experiments with a probe, SCCoR (single cell coactivator recruitment), indicate that the lack of genomic action is attributable to failure of coactivator recruitment. Thus, ginsenoside Re acts as a specific agonist for the nongenomic pathway of sex steroid receptors, and NO released from activated eNOS underlies cardiac K(+) channel activation and protection against ischemia-reperfusion injury.
Assuntos
Ginsenosídeos/farmacologia , Coração/efeitos dos fármacos , Panax/química , Canais de Potássio/agonistas , Animais , Células Cultivadas , Ativação Enzimática , Receptor alfa de Estrogênio/efeitos dos fármacos , Feminino , Transferência Ressonante de Energia de Fluorescência , Cobaias , Óxido Nítrico/metabolismo , Óxido Nítrico Sintase Tipo III/metabolismo , Fosforilação , Proteínas Proto-Oncogênicas c-akt/metabolismo , Receptores Androgênicos/efeitos dos fármacos , Receptores de Progesterona/efeitos dos fármacosRESUMO
For spatial and quantitative kinetic analysis of protein-protein interactions (PPIs) in living mammalian cells, a method was developed in which PPI-induced complementation of split Renilla luciferase triggers spontaneous emission of luminescence using a cell membrane permeable substrate, coelenterazine. This split Renilla luciferase complementation readout was shown to work for locating a PPI between the tyrosine-phosphorylated peptide (Y941) of IRS-1 and the SH2 domain of PI3K among insulin signaling pathways in living Chinese hamster ovary cells overexpressing human insulin receptors (CHO-HIR). It was thereby found that the insulin-stimulated interaction occurred near the plasma membrane in the cytosol.