Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
J Biomech Eng ; 146(5)2024 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-37646627

RESUMO

Arterial stiffening occurs during natural aging, is associated with an increased risk of adverse cardiovascular events, and can follow different timelines in males and females. One mechanism of arterial stiffening includes remodeling of the extracellular matrix (ECM), which alters the wall material properties. We used elastin haploinsufficient (Eln+/-) and wildtype (Eln+/+) mice to investigate how material properties of two different arteries (ascending aorta and carotid artery) change with age, sex, and ECM composition. We used a constitutive model by Dong and Sun that is based on the Holzapfel-Gasser-Ogden (HGO) type, but does not require a discrete number of fibrous ECM families and allows varied deformation coupling. We find that the amount of deformation coupling for the best fit model depends on the artery type. We also find that remodeling to maintain homeostatic (i.e., young, wildtype) values of biomechanical parameters with age, sex, and ECM composition depends on the artery type, with ascending aorta being more adaptable than carotid artery. Fitted material constants indicate sex-dependent remodeling that may be important for determining the time course of arterial stiffening in males and females. We correlated fitted material constants with ECM composition measured by biochemical (ascending aorta) or histological (carotid artery) methods. We show significant correlations between ECM composition and material parameters for the mean values for each group, with biochemical measurements correlating more strongly than histological measurements. Understanding how arterial stiffening depends on age, sex, ECM composition, and artery type may help design effective, personalized clinical treatment strategies.


Assuntos
Aorta , Elastina , Animais , Feminino , Humanos , Masculino , Camundongos , Aorta/patologia , Artérias Carótidas , Matriz Extracelular , Proteínas da Matriz Extracelular
2.
J Biomech ; 156: 111676, 2023 07.
Artigo em Inglês | MEDLINE | ID: mdl-37329640

RESUMO

The mechanical role of the skull-brain interface is critical to the pathology of concussion and traumatic brain injury (TBI) and may evolve with age. Here we characterize the skull-brain interface in juvenile, female Yucatan mini-pigs from 3 to 6 months old using techniques from magnetic resonance elastography (MRE). The displacements of the skull and brain were measured by a motion-sensitive MR imaging sequence during low-amplitude harmonic motion of the head. Each animal was scanned four times at 1-month intervals. Harmonic motion at 100 Hz was excited by three different configurations of a jaw actuator in order to vary the direction of loading. Rigid-body linear motions of the brain and skull were similar, although brain rotations were consistently smaller than corresponding skull rotations. Relative displacements between the brain and skull were estimated for voxels on the surface of the brain. Amplitudes of relative displacements between skull and brain were 1-3 µm, approximately 25-50% of corresponding skull displacements. Maps of relative displacement showed variations by anatomical region, and the normal component of relative displacement was consistently 25-50% of the tangential component. These results illuminate the mechanics of the skull-brain interface in a gyrencephalic animal model relevant to human brain injury and development.


Assuntos
Encéfalo , Técnicas de Imagem por Elasticidade , Animais , Feminino , Humanos , Suínos , Lactente , Porco Miniatura , Fenômenos Biomecânicos , Encéfalo/diagnóstico por imagem , Crânio/diagnóstico por imagem , Cabeça , Movimento (Física) , Imageamento por Ressonância Magnética/métodos
3.
Am J Physiol Heart Circ Physiol ; 325(1): H113-H124, 2023 07 01.
Artigo em Inglês | MEDLINE | ID: mdl-37267118

RESUMO

Thoracic aortic aneurysm is characterized by dilation of the aortic diameter by greater than 50%, which can lead to dissection or rupture. Common histopathology includes extracellular matrix remodeling that may affect transmural mass transport, defined as the movement of fluids and solutes across the wall. We measured in vitro ascending thoracic aorta mass transport in a mouse model with partial aneurysm phenotype penetration due to a mutation in the extracellular matrix protein fibulin-4 [Fbln4E57K/E57K, referred to as MU-A (aneurysm) or MU-NA (no aneurysm)]. To push the aneurysm phenotype, we also included MU mice with reduced levels of lysyl oxidase [Fbln4E57K/E57K;Lox+/-, referred to as MU-XA (extreme aneurysm)] and compared all groups to wild-type (WT) littermates. The phenotype variation allows investigation of how aneurysm severity correlates with mass transport parameters and extracellular matrix organization. We found that MU-NA ascending thoracic aortae have similar hydraulic conductance (Lp) to WT, but 397% higher solute permeability (ω) for 4 kDa FITC-dextran. In contrast, MU-A and MU-XA ascending thoracic aortae have 44-68% lower Lp and similar ω to WT. The results suggest that ascending thoracic aortic aneurysm progression involves an initial increase in ω, followed by a decrease in Lp after the aneurysm has formed. All MU ascending thoracic aortae are longer and have increased elastic fiber fragmentation in the extracellular matrix. There is a negative correlation between diameter and Lp or ω in MU ascending thoracic aortae. Changes in mass transport due to elastic fiber fragmentation could contribute to aneurysm progression or be leveraged for treatment.NEW & NOTEWORTHY Transmural mass transport is quantified in the ascending thoracic aorta of mice with a mutation in fibulin-4 that is associated with thoracic aortic aneurysms. Fluid and solute transport depend on aneurysm severity, correlate with elastic fiber fragmentation, and may be affected by proteoglycan deposition. Transport properties of the ascending thoracic aorta are provided and can be used in computational models. The changes in mass transport may contribute to aneurysm progression or be leveraged for aneurysm treatment.


Assuntos
Aneurisma da Aorta Torácica , Animais , Camundongos , Aorta/metabolismo , Aorta Torácica/metabolismo , Aneurisma da Aorta Torácica/metabolismo , Proteínas de Ligação ao Cálcio/metabolismo , Modelos Animais de Doenças , Proteínas da Matriz Extracelular/genética , Proteínas da Matriz Extracelular/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA