Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Front Microbiol ; 14: 1280258, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-38143866

RESUMO

In the ever-evolving realm of agriculture, the convoluted interaction between plants and microorganisms have assumed paramount significance. Fungal endophytes, once perceived as mere bystanders within plant tissues, have now emerged as dynamic defenders of plant health. This comprehensive review delves into the captivating world of fungal endophytes and their multifaceted biocontrol mechanisms. Exploring their unique ability to coexist with their plant hosts, fungal endophytes have unlocked a treasure trove of biological weaponry to fend off pathogens and enhance plant resilience. From the synthesis of bioactive secondary metabolites to intricate signaling pathways these silent allies are masters of biological warfare. The world of fungal endophytes is quite fascinating as they engage in a delicate dance with the plant immune system, orchestrating a symphony of defense that challenges traditional notions of plant-pathogen interactions. The journey through the various mechanisms employed by these enigmatic endophytes to combat diseases, will lead to revelational understanding of sustainable agriculture. The review delves into cutting-edge research and promising prospects, shedding light on how fungal endophytes hold the key to biocontrol and the reduction of chemical inputs in agriculture. Their ecological significance, potential for bioprospecting and avenues for future research are also explored. This exploration of the biocontrol mechanisms of fungal endophytes promise not only to enrich our comprehension of plant-microbe relationships but also, to shape the future of sustainable and ecofriendly agricultural practices. In this intricate web of life, fungal endophytes are indeed the unsung heroes, silently guarding our crops and illuminating a path towards a greener, healthier tomorrow.

2.
Curr Microbiol ; 80(6): 192, 2023 Apr 26.
Artigo em Inglês | MEDLINE | ID: mdl-37101055

RESUMO

The quest for increasing agricultural yield due to increasing population pressure and demands for healthy food has inevitably led to the indiscriminate use of chemical fertilizers. On the contrary, the exposure of the crops to abiotic stress and biotic stress interferes with crop growth further hindering the productivity. Sustainable agricultural practices are of major importance to enhance production and feed the rising population. The use of plant growth promoting (PGP) rhizospheric microbes is emerging as an efficient approach to ameliorate global dependence on chemicals, improve stress tolerance of plants, boost up growth and ensure food security. Rhizosphere associated microbiomes promote the growth by enhancing the uptake of the nutrients, producing plant growth regulators, iron chelating complexes, shaping the root system under stress conditions and decreasing the levels of inhibitory ethylene concentrations and protecting plants from oxidative stress. Plant growth-promoting rhizospheric microbes belong to diverse range of genera including Acinetobacter, Achromobacter, Aspergillus, Bacillus, Burkholderia, Flavobacterium, Klebsiella, Micrococcus, Penicillium, Pseudomonas, Serratia and Trichoderma. Plant growth promoting microbes are an interesting aspect of research for scientific community and a number of formulations of beneficial microbes are also commercially available. Thus, recent progress in our understanding on rhizospheric microbiomes along with their major roles and mechanisms of action under natural and stressful conditions should facilitate their application as a reliable component in the management of sustainable agricultural system. This review highlights the diversity of plant growth promoting rhizospheric microbes, their mechanisms of plant growth promotion, their role under biotic and abiotic stress and status of biofertilizers. The article further focuses on the role of omics approaches in plant growth promoting rhizospheric microbes and draft genome of PGP microbes.


Assuntos
Agricultura , Microbiota , Agricultura/métodos , Produtos Agrícolas/microbiologia , Reguladores de Crescimento de Plantas , Biodiversidade , Microbiologia do Solo
3.
World J Microbiol Biotechnol ; 37(9): 150, 2021 Aug 11.
Artigo em Inglês | MEDLINE | ID: mdl-34379213

RESUMO

Cytolethal Distending Toxin (CDT) belongs to the AB toxin family and is produced by a plethora of Gram-negative bacteria. Eight human-affecting enteropathogens harbor CDT that causes irritable bowel syndrome (IBS), dysentery, chancroid, and periodontitis worldwide. They have a novel molecular mode of action as they interfere in the eukaryotic cell-cycle progression leading to G2/M arrest and apoptosis. CDT, the first bacterial genotoxin described, is encoded in a single operon possessing three proteins, CdtA, CdtB, and CdtC. CdtA and CdtC are needed for the binding of the CDT toxin complex to the cholesterol-rich lipid domains of the host cell while the CdtB is the active moiety. Sequence and 3D structural-based analysis of CdtB showed similarities with nucleases and phosphatases, it was hypothesized that CdtB exercises a biochemical function identical to both these enzymes. CDT is secreted through the outer membrane vesicles from the producing bacteria. It is internalized in the target cells via clathrin-dependent endocytosis and translocated to the host cell nucleus through the Golgi complex and ER. This study discusses the virulence role of CDT, causing pathogenicity by acting as a tri-perditious complex in the CDT-producing species with an emphasis on its potential role as a biomarker and an anti-tumor agent.


Assuntos
Antineoplásicos/farmacologia , Toxinas Bacterianas/farmacologia , Bactérias Gram-Negativas/metabolismo , Mutagênicos/farmacologia , Toxinas Bacterianas/química , Ciclo Celular , Humanos , Modelos Moleculares , Óperon , Conformação Proteica
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA