Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 99
Filtrar
1.
Sci Rep ; 14(1): 11916, 2024 05 24.
Artigo em Inglês | MEDLINE | ID: mdl-38789473

RESUMO

Low-frequency transcranial ultrasound stimulation (TUS) allows to alter brain functioning with a high spatial resolution and to reach deep targets. However, the time-course of TUS effects remains largely unknown. We applied TUS on three brain targets for three different monkeys: the anterior medial prefrontal cortex, the supplementary motor area and the perigenual anterior cingulate cortex. For each, one resting-state fMRI was acquired between 30 and 150 min after TUS as well as one without stimulation (control). We captured seed-based brain connectivity changes dynamically and on an individual basis. We also assessed between individuals and between targets homogeneity and brain features that predicted TUS changes. We found that TUS prompts heterogenous functional connectivity alterations yet retain certain consistent changes; we identified 6 time-courses of changes including transient and long duration alterations; with a notable degree of accuracy we found that brain alterations could partially be predicted. Altogether, our results highlight that TUS induces heterogeneous functional connectivity alterations. On a more technical point, we also emphasize the need to consider brain changes over-time rather than just observed during a snapshot; to consider inter-individual variability since changes could be highly different from one individual to another.


Assuntos
Imageamento por Ressonância Magnética , Animais , Imageamento por Ressonância Magnética/métodos , Masculino , Córtex Pré-Frontal/fisiologia , Córtex Pré-Frontal/diagnóstico por imagem , Encéfalo/fisiologia , Encéfalo/diagnóstico por imagem , Macaca mulatta , Córtex Motor/fisiologia , Córtex Motor/diagnóstico por imagem , Mapeamento Encefálico/métodos , Giro do Cíngulo/fisiologia , Giro do Cíngulo/diagnóstico por imagem
2.
PLoS One ; 19(4): e0301599, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38557681

RESUMO

In this study, structural images of 1048 healthy subjects from the Human Connectome Project Young Adult study and 94 from ADNI-3 study were processed by an in-house tractography pipeline and analyzed together with pre-processed data of the same subjects from braingraph.org. Whole brain structural connectome features were used to build a simple correlation-based regression machine learning model to predict intelligence and age of healthy subjects. Our results showed that different forms of intelligence as well as age are predictable to a certain degree from diffusion tensor imaging detecting anatomical fiber tracts in the living human brain. Though we did not identify significant differences in the prediction capability for the investigated features depending on the imaging feature extraction method, we did find that crystallized intelligence was consistently better predictable than fluid intelligence from structural connectivity data through all datasets. Our findings suggest a practical and scalable processing and analysis framework to explore broader research topics employing brain MR imaging.


Assuntos
Conectoma , Imagem de Tensor de Difusão , Adulto Jovem , Humanos , Imagem de Tensor de Difusão/métodos , Conectoma/métodos , Imageamento por Ressonância Magnética/métodos , Encéfalo/diagnóstico por imagem , Inteligência
3.
PLoS Comput Biol ; 20(1): e1011778, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38271301
4.
PLoS Comput Biol ; 19(8): e1011349, 2023 08.
Artigo em Inglês | MEDLINE | ID: mdl-37552650

RESUMO

Significant research has investigated synchronisation in brain networks, but the bulk of this work has explored the contribution of brain networks at the macroscale. Here we explore the effects of changing network topology on functional dynamics in spatially constrained random networks representing mesoscale neocortex. We use the Kuramoto model to simulate network dynamics and explore synchronisation and critical dynamics of the system as a function of topology in randomly generated networks with a distance-related wiring probability and no preferential attachment term. We show networks which predominantly make short-distance connections smooth out the critical coupling point and show much greater metastability, resulting in a wider range of coupling strengths demonstrating critical dynamics and metastability. We show the emergence of cluster synchronisation in these geometrically-constrained networks with functional organisation occurring along structural connections that minimise the participation coefficient of the cluster. We show that these cohorts of internally synchronised nodes also behave en masse as weakly coupled nodes and show intra-cluster desynchronisation and resynchronisation events related to inter-cluster interaction. While cluster synchronisation appears crucial to healthy brain function, it may also be pathological if it leads to unbreakable local synchronisation which may happen at extreme topologies, with implications for epilepsy research, wider brain function and other domains such as social networks.


Assuntos
Conectoma , Neocórtex , Conectoma/métodos , Imageamento por Ressonância Magnética/métodos , Rede Nervosa/patologia , Encéfalo
5.
Front Neuroinform ; 17: 1170337, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37377946

RESUMO

The analysis of whole brain networks started in the 1980s when only a handful of connectomes were available. In these early days, information about the human connectome was absent and one could only dream about having information about connectivity in a single human subject. Thanks to non-invasive methods such as diffusion imaging, we now know about connectivity in many species and, for some species, in many individuals. To illustrate the rapid change in availability of connectome data, the UK Biobank is on track to record structural and functional connectivity in 100,000 human subjects. Moreover, connectome data from a range of species is now available: from Caenorhabditis elegans and the fruit fly to pigeons, rodents, cats, non-human primates, and humans. This review will give a brief overview of what structural connectivity data is now available, how connectomes are organized, and how their organization shows common features across species. Finally, I will outline some of the current challenges and potential future work in making use of connectome information.

6.
Netw Neurosci ; 7(1): 254-268, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37334003

RESUMO

Neural systems are shaped by multiple constraints, balancing region communication with the cost of establishing and maintaining physical connections. It has been suggested that the lengths of neural projections be minimized, reducing their spatial and metabolic impact on the organism. However, long-range connections are prevalent in the connectomes across various species, and thus, rather than rewiring connections to reduce length, an alternative theory proposes that the brain minimizes total wiring length through a suitable positioning of regions, termed component placement optimization. Previous studies in nonhuman primates have refuted this idea by identifying a nonoptimal component placement, where a spatial rearrangement of brain regions in silico leads to a reduced total wiring length. Here, for the first time in humans, we test for component placement optimization. We show a nonoptimal component placement for all subjects in our sample from the Human Connectome Project (N = 280; aged 22-30 years; 138 females), suggesting the presence of constraints-such as the reduction of processing steps between regions-that compete with the elevated spatial and metabolic costs. Additionally, by simulating communication between brain regions, we argue that this suboptimal component placement supports dynamics that benefit cognition.

7.
J Neurosurg ; 138(1): 27-37, 2023 01 01.
Artigo em Inglês | MEDLINE | ID: mdl-35523258

RESUMO

OBJECTIVE: Functional connectivity shows the ability to predict the outcome of subthalamic nucleus deep brain stimulation (DBS) in Parkinson disease (PD). However, evidence supporting its value in predicting the outcome of globus pallidus internus (GPi) DBS remains scarce. In this study the authors investigated patient-specific functional connectivity related to GPi DBS outcome in PD and established connectivity models for outcome prediction. METHODS: The authors reviewed the outcomes of 21 patients with PD who received bilateral GPi DBS and presurgical functional MRI at the Ruijin Hospital. The connectivity profiles within cortical areas identified as relevant to DBS outcome in the literature were calculated using the intersection of the volume of tissue activated (VTA) and the local structures as the seeds. Combined with the leave-one-out cross-validation strategy, models of the optimal connectivity profile were constructed to predict outcome. RESULTS: Connectivity between the pallidal areas and primary motor area, supplementary motor area (SMA), and premotor cortex was identified through the literature as related to GPi DBS outcome. The similarity between the connectivity profile within the primary motor area, SMA, pre-SMA, and premotor cortex seeding from the VTA-GPi intersection from an out-of-sample patient and the constructed in-sample optimal connectivity profile predicts GPi DBS outcome (R = 0.58, p = 0.006). The predictions on average deviated by 13.1% ± 11.3% from actual improvements. On the contrary, connectivity profiles seeding from the GPi (R = -0.12, p = 0.603), the VTA (R = 0.23, p = 0.308), the VTA outside the GPi (R = 0.12, p = 0.617), or other local structures were found not to be predictive. CONCLUSIONS: The results showed that patient-specific functional connectivity seeding from the VTA-GPi intersection could help in GPi DBS outcome prediction. Reproducibility remains to be determined across centers in larger cohorts stratified by PD motor subtype.


Assuntos
Estimulação Encefálica Profunda , Doença de Parkinson , Núcleo Subtalâmico , Humanos , Globo Pálido/diagnóstico por imagem , Doença de Parkinson/diagnóstico por imagem , Doença de Parkinson/terapia , Reprodutibilidade dos Testes , Estimulação Encefálica Profunda/métodos , Núcleo Subtalâmico/diagnóstico por imagem , Resultado do Tratamento
8.
Neurology ; 100(6): e616-e626, 2023 02 07.
Artigo em Inglês | MEDLINE | ID: mdl-36307219

RESUMO

BACKGROUND AND OBJECTIVE: To investigate the pathway-specific correspondence between structural and functional changes resulting from focal subcortical stroke and their causal influence on clinical symptom. METHODS: In this retrospective, cross-sectional study, we mainly focused on patients with unilateral subcortical chronic stroke with moderate-severe motor impairment assessed by Fugl-Meyer Assessment (upper extremity) and healthy controls. All participants underwent both resting-state fMRI and diffusion tensor imaging. To parse the pathway-specific structure-function covariation, we performed association analyses between the fine-grained corticospinal tracts (CSTs) originating from 6 subareas of the sensorimotor cortex and functional connectivity (FC) of the corresponding subarea, along with the refined corpus callosum (CC) sections and interhemispheric FC. A mediation analysis with FC as the mediator was used to further assess the pathway-specific effects of structural damage on motor impairment. RESULTS: Thirty-five patients (mean age 52.7 ± 10.2 years, 27 men) and 43 healthy controls (mean age 56.2 ± 9.3 years, 21 men) were enrolled. Among the 6 CSTs, we identified 9 structurally and functionally covaried pathways, originating from the ipsilesional primary motor area (M1), dorsal premotor area (PMd), and primary somatosensory cortex (p < 0.05, corrected). FC for the bilateral M1, PMd, and ventral premotor cortex covaried with secondary degeneration of the corresponding CC sections (p < 0.05, corrected). Moreover, these covarying structures and functions were significantly correlated with the Fugl-Meyer Assessment (upper extremity) scores (p < 0.05, uncorrected). In particular, FC between the ipsilesional PMd and contralesional cerebellum (ß = -0.141, p < 0.05, CI = [-0.319 to -0.015]) and interhemispheric FC of the PMd (ß = 0.169, p < 0.05, CI = [0.015-0.391]) showed significant mediation effects in the prediction of motor impairment with structural damage of the CST and CC. DISCUSSIONS: This study reveals causal influence of structural and functional pathways on motor impairment after subcortical stroke and provides a promising way to investigate pathway-specific structure-function coupling. Clinically, our findings may offer a circuit-based evidence for the PMd as a critical neuromodulation target in more impaired patients with stroke and also suggest the cerebellum as a potential target.


Assuntos
Transtornos Motores , Acidente Vascular Cerebral , Adulto , Idoso , Humanos , Masculino , Pessoa de Meia-Idade , Estudos Transversais , Imagem de Tensor de Difusão , Imageamento por Ressonância Magnética/métodos , Recuperação de Função Fisiológica , Estudos Retrospectivos , Acidente Vascular Cerebral/complicações , Acidente Vascular Cerebral/diagnóstico por imagem , Feminino
9.
ACS Synth Biol ; 11(4): 1531-1541, 2022 04 15.
Artigo em Inglês | MEDLINE | ID: mdl-35389631

RESUMO

Computational tools have been widely adopted for strain optimization in metabolic engineering, contributing to numerous success stories of producing industrially relevant biochemicals. However, most of these tools focus on single metabolic intervention strategies (either gene/reaction knockout or amplification alone) and rely on hypothetical optimality principles (e.g., maximization of growth) and precise gene expression (e.g., fold changes) for phenotype prediction. This paper introduces OptDesign, a new two-step strain design strategy. In the first step, OptDesign selects regulation candidates that have a noticeable flux difference between the wild type and production strains. In the second step, it computes optimal design strategies with limited manipulations (combining regulation and knockout), leading to high biochemical production. The usefulness and capabilities of OptDesign are demonstrated for the production of three biochemicals in Escherichia coli using the latest genome-scale metabolic model iML1515, showing highly consistent results with previous studies while suggesting new manipulations to boost strain performance. The source code is available at https://github.com/chang88ye/OptDesign.


Assuntos
Escherichia coli , Engenharia Metabólica , Escherichia coli/genética , Escherichia coli/metabolismo , Técnicas de Inativação de Genes , Redes e Vias Metabólicas , Modelos Biológicos , Fenótipo , Software
10.
Brain ; 145(6): 2190-2205, 2022 06 30.
Artigo em Inglês | MEDLINE | ID: mdl-35262667

RESUMO

Visual hallucinations are a common feature of Lewy body dementia. Previous studies have shown that visual hallucinations are highly specific in differentiating Lewy body dementia from Alzheimer's disease dementia and Alzheimer-Lewy body mixed pathology cases. Computational models propose that impairment of visual and attentional networks is aetiologically key to the manifestation of visual hallucinations symptomatology. However, there is still a lack of experimental evidence on functional and structural brain network abnormalities associated with visual hallucinations in Lewy body dementia. We used EEG source localization and network based statistics to assess differential topographical patterns in Lewy body dementia between 25 participants with visual hallucinations and 17 participants without hallucinations. Diffusion tensor imaging was used to assess structural connectivity between thalamus, basal forebrain and cortical regions belonging to the functionally affected network component in the hallucinating group, as assessed with network based statistics. The number of white matter streamlines within the cortex and between subcortical and cortical regions was compared between hallucinating and not hallucinating groups and correlated with average EEG source connectivity of the affected subnetwork. Moreover, modular organization of the EEG source network was obtained, compared between groups and tested for correlation with structural connectivity. Network analysis showed that compared to non-hallucinating patients, those with hallucinations feature consistent weakened connectivity within the visual ventral network, and between this network and default mode and ventral attentional networks, but not between or within attentional networks. The occipital lobe was the most functionally disconnected region. Structural analysis yielded significantly affected white matter streamlines connecting the cortical regions to the nucleus basalis of Meynert and the thalamus in hallucinating compared to not hallucinating patients. The number of streamlines in the tract between the basal forebrain and the cortex correlated with cortical functional connectivity in non-hallucinating patients, while a correlation emerged for the white matter streamlines connecting the functionally affected cortical regions in the hallucinating group. This study proposes, for the first time, differential functional networks between hallucinating and not hallucinating Lewy body dementia patients, and provides empirical evidence for existing models of visual hallucinations. Specifically, the outcome of the present study shows that the hallucinating condition is associated with functional network segregation in Lewy body dementia and supports the involvement of the cholinergic system as proposed in the current literature.


Assuntos
Doença de Alzheimer , Doença por Corpos de Lewy , Doença de Alzheimer/patologia , Encéfalo/patologia , Imagem de Tensor de Difusão , Alucinações/etiologia , Humanos , Doença por Corpos de Lewy/complicações , Doença por Corpos de Lewy/diagnóstico por imagem , Doença por Corpos de Lewy/patologia
11.
Bioinformatics ; 38(2): 453-460, 2022 01 03.
Artigo em Inglês | MEDLINE | ID: mdl-34529036

RESUMO

MOTIVATION: Agent-based modeling is an indispensable tool for studying complex biological systems. However, existing simulation platforms do not always take full advantage of modern hardware and often have a field-specific software design. RESULTS: We present a novel simulation platform called BioDynaMo that alleviates both of these problems. BioDynaMo features a modular and high-performance simulation engine. We demonstrate that BioDynaMo can be used to simulate use cases in: neuroscience, oncology and epidemiology. For each use case, we validate our findings with experimental data or an analytical solution. Our performance results show that BioDynaMo performs up to three orders of magnitude faster than the state-of-the-art baselines. This improvement makes it feasible to simulate each use case with one billion agents on a single server, showcasing the potential BioDynaMo has for computational biology research. AVAILABILITY AND IMPLEMENTATION: BioDynaMo is an open-source project under the Apache 2.0 license and is available at www.biodynamo.org. Instructions to reproduce the results are available in the supplementary information. SUPPLEMENTARY INFORMATION: Available at https://doi.org/10.5281/zenodo.5121618.


Assuntos
Algoritmos , Software , Simulação por Computador , Biologia Computacional/métodos , Design de Software
12.
Neuroimage ; 244: 118615, 2021 12 01.
Artigo em Inglês | MEDLINE | ID: mdl-34563680

RESUMO

Natural vision engages a wide range of higher-level regions that integrate visual information over the large-scale brain network. How interareal connectivity reconfigures during the processing of ongoing natural visual scenes and how these dynamic functional changes relate to the underlaying anatomical links between regions is not well understood. Here, we hypothesized that macaque visual brain regions are poly-functional sharing the capacity to change their configuration state depending on the nature of visual input. To address this hypothesis, we reconstructed networks from in-vivo diffusion-weighted imaging (DWI) and functional magnetic resonance imaging (fMRI) data obtained in four alert macaque monkeys viewing naturalistic movie scenes. At first, we characterized network properties and found greater interhemispheric density and greater inter-subject variability in free-viewing networks as compared to structural networks. From the structural connectivity, we then captured modules on which we identified hubs during free-viewing that formed a widespread visuo-saccadic network across frontal (FEF, 46v), parietal (LIP, Tpt), and occipitotemporal modules (MT, V4, TEm), and that excluded primary visual cortex. Inter-subject variability of well-connected hubs reflected subject-specific configurations that largely recruited occipito-parietal and frontal modules. Across the cerebral hemispheres, free-viewing networks showed higher correlations among long-distance brain regions as compared to structural networks. From these findings, we hypothesized that long-distance interareal connectivity could reconfigure depending on the ongoing changes in visual scenes. Testing this hypothesis by applying temporally resolved functional connectivity we observed that many structurally defined areas (such as areas V4, MT/MST and LIP) were poly-functional as they were recruited as hub members of multiple network states that changed during the presentation of scenes containing objects, motion, faces, and actions. We suggest that functional flexibility in macaque macroscale brain networks is required for the efficient interareal communication during active natural vision. To further promote the use of naturalistic free-viewing paradigms and increase the development of macaque neuroimaging resources, we share our datasets in the PRIME-DE consortium.


Assuntos
Mapeamento Encefálico/métodos , Córtex Visual/diagnóstico por imagem , Animais , Encéfalo/diagnóstico por imagem , Imagem de Difusão por Ressonância Magnética , Feminino , Macaca , Imageamento por Ressonância Magnética , Estimulação Luminosa
13.
Front Neurosci ; 15: 718311, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34566564

RESUMO

Neuromodulation is an established treatment for numerous neurological conditions, but to expand the therapeutic scope there is a need to improve the spatial, temporal and cell-type specificity of stimulation. Optogenetics is a promising area of current research, enabling optical stimulation of genetically-defined cell types without interfering with concurrent electrical recording for closed-loop control of neural activity. We are developing an open-source system to provide a platform for closed-loop optogenetic neuromodulation, incorporating custom integrated circuitry for recording and stimulation, real-time closed-loop algorithms running on a microcontroller and experimental control via a PC interface. We include commercial components to validate performance, with the ultimate aim of translating this approach to humans. In the meantime our system is flexible and expandable for use in a variety of preclinical neuroscientific applications. The platform consists of a Controlling Abnormal Network Dynamics using Optogenetics (CANDO) Control System (CS) that interfaces with up to four CANDO headstages responsible for electrical recording and optical stimulation through custom CANDO LED optrodes. Control of the hardware, inbuilt algorithms and data acquisition is enabled via the CANDO GUI (Graphical User Interface). Here we describe the design and implementation of this system, and demonstrate how it can be used to modulate neuronal oscillations in vitro and in vivo.

14.
Commun Biol ; 4(1): 973, 2021 08 16.
Artigo em Inglês | MEDLINE | ID: mdl-34400752

RESUMO

Brain's modular connectivity gives this organ resilience and adaptability. The ageing process alters the organised modularity of the brain and these changes are further accentuated by neurodegeneration, leading to disorganisation. To understand this further, we analysed modular variability-heterogeneity of modules-and modular dissociation-detachment from segregated connectivity-in two ageing cohorts and a mixed cohort of neurodegenerative diseases. Our results revealed that the brain follows a universal pattern of high modular variability in metacognitive brain regions: the association cortices. The brain in ageing moves towards a segregated modular structure despite presenting with increased modular heterogeneity-modules in older adults are not only segregated, but their shape and size are more variable than in young adults. In the presence of neurodegeneration, the brain maintains its segregated connectivity globally but not locally, and this is particularly visible in dementia with Lewy bodies and Parkinson's disease dementia; overall, the modular brain shows patterns of differentiated pathology.


Assuntos
Encéfalo/patologia , Doença por Corpos de Lewy/patologia , Doença de Parkinson/patologia , Idoso , Idoso de 80 Anos ou mais , Estudos de Coortes , Inglaterra , Feminino , Humanos , Masculino , Pessoa de Meia-Idade
16.
Hum Brain Mapp ; 42(12): 3777-3791, 2021 08 15.
Artigo em Inglês | MEDLINE | ID: mdl-33973688

RESUMO

Finding clear connectome biomarkers for temporal lobe epilepsy (TLE) patients, in particular at early disease stages, remains a challenge. Currently, the whole-brain structural connectomes are analyzed based on coarse parcellations (up to 1,000 nodes). However, such global parcellation-based connectomes may be unsuitable for detecting more localized changes in patients. Here, we use a high-resolution network (~50,000-nodes overall) to identify changes at the local level (within brain regions) and test its relation with duration and surgical outcome. Patients with TLE (n = 33) and age-, sex-matched healthy subjects (n = 36) underwent high-resolution (~50,000 nodes) structural network construction based on deterministic tracking of diffusion tensor imaging. Nodes were allocated to 68 cortical regions according to the Desikan-Killany atlas. The connectivity within regions was then used to predict surgical outcome. MRI processing, network reconstruction, and visualization of network changes were integrated into the NICARA (https://nicara.eu). Lower clustering coefficient and higher edge density were found for local connectivity within regions in patients, but were absent for the global network between regions (68 cortical regions). Local connectivity changes, in terms of the number of changed regions and the magnitude of changes, increased with disease duration. Local connectivity yielded a better surgical outcome prediction (Mean value: 95.39% accuracy, 92.76% sensitivity, and 100% specificity) than global connectivity. Connectivity within regions, compared to structural connectivity between brain regions, can be a more efficient biomarker for epilepsy assessment and surgery outcome prediction of medically intractable TLE.


Assuntos
Córtex Cerebral/patologia , Imagem de Tensor de Difusão , Epilepsia/patologia , Rede Nervosa/patologia , Adulto , Córtex Cerebral/diagnóstico por imagem , Epilepsia/diagnóstico por imagem , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Rede Nervosa/diagnóstico por imagem , Estudos Retrospectivos , Fatores de Tempo , Resultado do Tratamento , Adulto Jovem
17.
Neuroimage ; 235: 118027, 2021 07 15.
Artigo em Inglês | MEDLINE | ID: mdl-33836274

RESUMO

Flexibility is a hallmark of human intelligence. Emerging studies have proposed several flexibility measurements at the level of individual regions, to produce a brain map of neural flexibility. However, flexibility is usually inferred from separate components of brain activity (i.e., intrinsic/task-evoked), and different definitions are used. Moreover, recent studies have argued that neural processing may be more than a task-driven and intrinsic dichotomy. Therefore, the understanding to neural flexibility is still incomplete. To address this issue, we propose a multifaceted definition of neural flexibility according to three key features: broad cognitive engagement, distributed connectivity, and adaptive connectome dynamics. For these three features, we first review the advances in computational approaches, their functional relevance, and their potential pitfalls. We then suggest a set of metrics that can help us assign a flexibility rating to each region. Subsequently, we present an emergent probabilistic view for further understanding the functional operation of individual regions in the unified framework of intrinsic and task-driven states. Finally, we highlight several areas related to the multifaceted definition of neural flexibility for future research. This review not only strengthens our understanding of flexible human brain, but also suggests that the measure of neural flexibility could bridge the gap between understanding intrinsic and task-driven brain function dynamics.


Assuntos
Encéfalo/fisiologia , Vias Neurais/fisiologia , Plasticidade Neuronal/fisiologia , Cognição/fisiologia , Conectoma , Humanos , Inteligência , Imageamento por Ressonância Magnética , Rede Nervosa/fisiologia
18.
Sci Rep ; 11(1): 4299, 2021 02 22.
Artigo em Inglês | MEDLINE | ID: mdl-33619307

RESUMO

Late-life depression (LLD) may increase the risk of Alzheimer's dementia (AD). While amyloidopathy accelerates AD progression, its role in such patients has not yet been elucidated. We hypothesized that cerebral amyloidopathy distinctly affects the alteration of brain network topology and may be associated with distinct cognitive symptoms. We recruited 26 and 27 depressed mild cognitive impairment (MCI) patients with (LLD-MCI-A(+)) and without amyloid accumulation (LLD-MCI-A(-)), respectively, and 21 normal controls. We extracted structural brain networks using their diffusion-weighted images. We aimed to compare the distinct network deterioration in LLD-MCI with and without amyloid accumulation and the relationship with their distinct cognitive decline. Thus, we performed a group comparison of the network topological measures and investigated any correlations with neurocognitive testing scores. Topological features of brain networks were different according to the presence of amyloid accumulation. Disrupted network connectivity was highly associated with impaired recall and recognition in LLD-MCI-A(+) patients. Inattention and dysexecutive function were more influenced by the altered networks involved in fronto-limbic circuitry dysfunction in LLD-MCI-A(-) patients. Our results show that alterations in brain network topology may reflect different cognitive dysfunction depending on amyloid accumulation in depressed older adults with MCI.


Assuntos
Amiloidose/complicações , Encéfalo/patologia , Encéfalo/fisiopatologia , Disfunção Cognitiva/etiologia , Disfunção Cognitiva/psicologia , Depressão/etiologia , Depressão/psicologia , Fatores Etários , Idoso , Idoso de 80 Anos ou mais , Amiloidose/diagnóstico , Disfunção Cognitiva/diagnóstico , Conectoma/métodos , Depressão/diagnóstico , Feminino , Humanos , Imageamento por Ressonância Magnética , Masculino
19.
Cereb Cortex ; 31(7): 3237-3253, 2021 06 10.
Artigo em Inglês | MEDLINE | ID: mdl-33625496

RESUMO

One of the most characteristic properties of many vertebrate neural systems is the layered organization of different cell types. This cytoarchitecture exists in the cortex, the retina, the hippocampus, and many other parts of the central nervous system. The developmental mechanisms of neural layer formation have been subject to substantial experimental efforts. Here, we provide a general computational model for cortical layer formation in 3D physical space. We show that this multiscale, agent-based model, comprising two distinct stages of apoptosis, can account for the wide range of neuronal numbers encountered in different cortical areas and species. Our results demonstrate the phenotypic richness of a basic state diagram structure. Importantly, apoptosis allows for changing the thickness of one layer without automatically affecting other layers. Therefore, apoptosis increases the flexibility for evolutionary change in layer architecture. Notably, slightly changed gene regulatory dynamics recapitulate the characteristic properties observed in neurodevelopmental diseases. Overall, we propose a novel computational model using gene-type rules, exhibiting many characteristics of normal and pathological cortical development.


Assuntos
Simulação por Computador , Córtex Somatossensorial/fisiologia , Lobo Temporal/fisiologia , Córtex Visual/fisiologia , Animais , Córtex Cerebral/citologia , Córtex Cerebral/fisiologia , Humanos , Macaca , Camundongos , Ratos , Córtex Somatossensorial/citologia , Especificidade da Espécie , Lobo Temporal/citologia , Córtex Visual/citologia
20.
Neurocomputing (Amst) ; 416: 38-44, 2020 Nov 27.
Artigo em Inglês | MEDLINE | ID: mdl-33250573

RESUMO

Simulations of neural networks can be used to study the direct effect of internal or external changes on brain dynamics. However, some changes are not immediate but occur on the timescale of weeks, months, or years. Examples include effects of strokes, surgical tissue removal, or traumatic brain injury but also gradual changes during brain development. Simulating network activity over a long time, even for a small number of nodes, is a computational challenge. Here, we model a coupled network of human brain regions with a modified Wilson-Cowan model representing dynamics for each region and with synaptic plasticity adjusting connection weights within and between regions. Using strategies ranging from different models for plasticity, vectorization and a different differential equation solver setup, we achieved one second runtime for one second biological time.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA