Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Adv Clin Exp Med ; 33(3): 225-232, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-37386858

RESUMO

BACKGROUND: The Coccomyxa sp. strain KJ (Coccomyxa KJ), a microalga found in Japan, has a potential function in controlling viral infections. Recently, its dry powder has been marketed as a health food product. OBJECTIVES: This pilot study investigated the effects of Coccomyxa KJ powder tablet intake on allergic reactions and immune functions in healthy participants. MATERIAL AND METHODS: Nine healthy volunteers (4 males and 5 females) who expressed interest in foods containing Coccomyxa KJ, and were willing to undergo blood tests, were recruited. Each individual was asked to take 2 Coccomyxa KJ powder tablets (0.3 g) before breakfast once a day for 4 weeks. The salivary immunoglobulin A (IgA) level and blood parameters (white blood cell (WBC) count, eosinophil and lymphocyte counts and percentages, natural killer (NK) cell activity, interleukin (IL)-6 level, and T helper (Th)1/Th2 cell ratio) were evaluated at baseline and weeks 2 and 4. RESULTS: The 4-week intake of Coccomyxa KJ did not affect salivary IgA levels, WBC count, eosinophil and lymphocyte counts and percentages, or the Th1/Th2 ratio. There were significant differences in the NK cell activity after 4 weeks, with an average increase of 11.78 (95% confidence interval (95% CI): 6.80-16.76). None of the patients experienced adverse reactions during or after the study. CONCLUSIONS: Long-term Coccomyxa KJ intake improved NK cell activity without causing adverse effects on the indicators of local immunity, systemic inflammation and immune response balance. This study suggests that Coccomyxa KJ powder tablets can induce beneficial immune modifications without causing any adverse effects.


Assuntos
Microalgas , Masculino , Feminino , Humanos , Projetos Piloto , Alérgenos , Pós , Interleucina-6 , Imunoglobulina A
2.
J Clin Lab Anal ; 36(1): e24146, 2022 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-34837712

RESUMO

BACKGROUND: Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is the causative agent of coronavirus disease 2019 (COVID-19) and is capable of human-to-human transmission and rapid global spread. Thus, the establishment of high-quality viral detection and quantification methods, and the development of anti-SARS-CoV-2 agents are critical. METHODS: Here, we present the rapid detection of infectious SARS-CoV-2 particles using a plaque assay with 0.5% agarose-ME (Medium Electroosmosis) as an overlay medium. RESULTS: The plaques were capable of detecting the virus within 36-40 h post-infection. In addition, we showed that a monogalactosyl diacylglyceride isolated from a microalga (Coccomyxa sp. KJ) could inactivate the clinical isolates of SARS-CoV-2 in a time- and concentration-dependent manner. CONCLUSIONS: These results would allow rapid quantification of the infectious virus titers and help develop more potent virucidal agents against SARS-CoV-2.


Assuntos
Antivirais/farmacologia , Galactose/análogos & derivados , Glicerídeos/farmacologia , Microalgas/química , SARS-CoV-2/efeitos dos fármacos , Animais , Antivirais/química , COVID-19/virologia , Chlorocebus aethiops , Clorófitas/química , Galactose/química , Galactose/farmacologia , Glicerídeos/química , Humanos , SARS-CoV-2/genética , SARS-CoV-2/isolamento & purificação , Células Vero , Ensaio de Placa Viral
3.
Int J Infect Dis ; 115: 86-92, 2022 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-34800690

RESUMO

OBJECTIVES: We conducted a nationwide external quality assessment (EQA) study of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) nucleic acid amplification testing in Japan. METHODS: A total of 563 public health and private sector laboratories participated. The EQA samples comprised 6 RNA and full-process controls. RESULTS: The overall agreements were 99.3% and 97.9% for the RNA and full-process controls, respectively. A total of 530/563 (94.1%) laboratories reported correct results; public health laboratories had the highest accuracy. Thirty-three laboratories reported at least one incorrect result (26 laboratories of medical facilities, 5 commercial laboratories, 1 public health laboratory, and 1 other). Sixteen laboratories of medical facilities that used a fully automated assay system failed to detect the presence of the full-process control, due to inherent insufficiency in the limit of detection (LOD). Other causes of incorrect results included failure to ensure the LOD (n = 13), error in result judging or reporting (n = 3), and error in sample handling (n = 1). CONCLUSIONS: Performance was mostly dependent on the laboratory category and assay evaluation, particularly the LOD. Guidance should be developed based on these results, particularly in the phase of new entry into laboratory services for SARS-CoV-2.


Assuntos
COVID-19 , SARS-CoV-2 , Humanos , Japão , Técnicas de Amplificação de Ácido Nucleico , Sensibilidade e Especificidade
4.
PLoS One ; 16(3): e0248397, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33784298

RESUMO

In the ongoing coronavirus disease 2019 (COVID-19) pandemic, PCR has been widely used for screening patients displaying relevant symptoms. The rapid detection of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) enables prompt diagnosis and the implementation of proper precautionary and isolation measures for the patient. In the present study, we aimed to evaluate the basic assay performance of an innovative PCR system, GeneSoC® (Kyorin Pharmaceutical Co. Ltd., Tokyo, Japan). A total of 1,445 clinical samples were submitted to the clinical laboratory, including confirmed or suspected cases of COVID-19, from February 13 to August 31. Specimen types included nasopharyngeal swabs. The sampling was performed several times for each patient every 2-7 days. Using this system, sequences specific for SARS-CoV-2 RNA could be detected in a sample within 10-15 min using the microfluidic thermal cycling technology. Analytical sensitivity studies showed that GeneSoC® could detect the target sequence of the viral envelope and RNA-dependent RNA-polymerase (RdRp) genes at 5 and 10 copies/µL, respectively. The precision of the GeneSoC® measurements using clinical isolates of the virus at a concentration of 103 copies/µL was favorable for both the genes; within-run repeatability and between-run reproducibility coefficient of variation values were less than 3% and 2%, respectively; and the reproducibility of inter-detection units was less than 5%. Method comparison by LightCycler® 480 showed the positive and negative agreement to be 100% [(174/174) and (1271/1271), respectively]. GeneSoC® proved to be a rapid and reliable detection system for the prompt diagnosis of symptomatic COVID-19 patients and could help reduce the spread of infections and facilitate more rapid treatment of infected patients.


Assuntos
Reação em Cadeia da Polimerase/métodos , SARS-CoV-2/genética , SARS-CoV-2/isolamento & purificação , Humanos , Limite de Detecção , Fatores de Tempo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA