Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 21
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Environ Microbiome ; 19(1): 1, 2024 Jan 02.
Artigo em Inglês | MEDLINE | ID: mdl-38167520

RESUMO

BACKGROUND: The anaerobic digestion process degrades organic matter into simpler compounds and occurs in strictly anaerobic and microaerophilic environments. The process is carried out by a diverse community of microorganisms where each species has a unique role and it has relevant biotechnological applications since it is used for biogas production. Some aspects of the microbiome, including its interaction with phages, remains still unclear: a better comprehension of the community composition and role of each species is crucial for a cured understanding of the carbon cycle in anaerobic systems and improving biogas production. RESULTS: The primary objective of this study was to expand our understanding on the anaerobic digestion microbiome by jointly analyzing its prokaryotic and viral components. By integrating 192 additional datasets into a previous metagenomic database, the binning process generated 11,831 metagenome-assembled genomes from 314 metagenome samples published between 2014 and 2022, belonging to 4,568 non-redundant species based on ANI calculation and quality verification. CRISPR analysis on these genomes identified 76 archaeal genomes with active phage interactions. Moreover, single-nucleotide variants further pointed to archaea as the most critical members of the community. Among the MAGs, two methanogenic archaea, Methanothrix sp. 43zhSC_152 and Methanoculleus sp. 52maCN_3230, had the highest number of SNVs, with the latter having almost double the density of most other MAGs. CONCLUSIONS: This study offers a more comprehensive understanding of microbial community structures that thrive at different temperatures. The findings revealed that the fraction of archaeal species characterized at the genome level and reported in public databases is higher than that of bacteria, although still quite limited. The identification of shared spacers between phages and microbes implies a history of phage-bacterial interactions, and specifically lysogenic infections. A significant number of SNVs were identified, primarily comprising synonymous and nonsynonymous variants. Together, the findings indicate that methanogenic archaea are subject to intense selective pressure and suggest that genomic variants play a critical role in the anaerobic digestion process. Overall, this study provides a more balanced and diverse representation of the anaerobic digestion microbiota in terms of geographic location, temperature range and feedstock utilization.

2.
mSystems ; 9(2): e0100723, 2024 Feb 20.
Artigo em Inglês | MEDLINE | ID: mdl-38206015

RESUMO

Kaposi's sarcoma-associated herpesvirus (KSHV) is a large, oncogenic DNA virus belonging to the gammaherpesvirus subfamily. KSHV has been extensively studied with various high-throughput RNA-sequencing approaches to map the transcription start and end sites, the splice junctions, and the translation initiation sites. Despite these efforts, the comprehensive annotation of the viral transcriptome remains incomplete. In the present study, we generated a long-read sequencing data set of the lytic and latent KSHV transcriptome using native RNA and direct cDNA-sequencing methods. This was supplemented with Cap Analysis of Gene Expression sequencing based on a short-read platform. We also utilized data sets from previous publications for our analysis. As a result of this combined approach, we have identified a number of novel viral transcripts and RNA isoforms and have either corroborated or improved the annotation of previously identified viral RNA molecules, thereby notably enhancing our comprehension of the transcriptomic architecture of the KSHV genome. We also evaluated the coding capability of transcripts previously thought to be non-coding by integrating our data on the viral transcripts with translatomic information from other publications.IMPORTANCEDeciphering the viral transcriptome of Kaposi's sarcoma-associated herpesvirus is of great importance because we can gain insight into the molecular mechanism of viral replication and pathogenesis, which can help develop potential targets for antiviral interventions. Specifically, the identification of substantial transcriptional overlaps by this work suggests the existence of a genome-wide interference between transcriptional machineries. This finding indicates the presence of a novel regulatory layer, potentially controlling the expression of viral genes.


Assuntos
Herpesvirus Humano 8 , Herpesvirus Humano 8/genética , Transcriptoma/genética , Replicação Viral/genética , Perfilação da Expressão Gênica , RNA/metabolismo
3.
J Virol ; 97(11): e0097223, 2023 Nov 30.
Artigo em Inglês | MEDLINE | ID: mdl-37909728

RESUMO

IMPORTANCE: The current view is that the default pathway of Kaposi's sarcoma-associated herpesvirus (KSHV) infection is the establishment of latency, which is a prerequisite for lifelong infection and viral oncogenesis. This view about KSHV infection is supported by the observations that KSHV latently infects most of the cell lines cultured in vitro in the absence of any environmental stresses that may occur in vivo. The goal of this study was to determine the effect of hypoxia, a natural stress stimulus, on primary KSHV infection. Our data indicate that hypoxia promotes euchromatin formation on the KSHV genome following infection and supports lytic de novo KSHV infection. We also discovered that hypoxia-inducible factor-1α is required and sufficient for allowing lytic KSHV infection. Based on our results, we propose that hypoxia promotes lytic de novo infection in cells that otherwise support latent infection under normoxia; that is, the environmental conditions can determine the outcome of KSHV primary infection.


Assuntos
Infecções por Herpesviridae , Subunidade alfa do Fator 1 Induzível por Hipóxia , Hipóxia , Humanos , Regulação Viral da Expressão Gênica , Herpesvirus Humano 8 , Subunidade alfa do Fator 1 Induzível por Hipóxia/genética , Subunidade alfa do Fator 1 Induzível por Hipóxia/metabolismo , Sarcoma de Kaposi , Latência Viral
4.
bioRxiv ; 2023 Sep 21.
Artigo em Inglês | MEDLINE | ID: mdl-37790386

RESUMO

Kaposi's sarcoma-associated herpesvirus (KSHV) is a large, oncogenic DNA virus belonging to the gammaherpesvirus subfamily. KSHV has been extensively studied with various high-throughput RNA-sequencing approaches to map the transcription start and end sites, the splice junctions, and the translation initiation sites. Despite these efforts, the comprehensive annotation of the viral transcriptome remains incomplete. In the present study, we generated a long-read sequencing dataset of the lytic and latent KSHV transcriptome using native RNA and direct cDNA sequencing methods. This was supplemented with CAGE sequencing based on a short-read platform. We also utilized datasets from previous publications for our analysis. As a result of this combined approach, we have identified a number of novel viral transcripts and RNA isoforms and have either corroborated or improved the annotation of previously identified viral RNA molecules, thereby notably enhancing our comprehension of the transcriptomic architecture of the KSHV genome. We also evaluated the coding capability of transcripts previously thought to be non-coding, by integrating our data on the viral transcripts with translatomic information from other publications.

5.
Sci Rep ; 13(1): 16395, 2023 09 29.
Artigo em Inglês | MEDLINE | ID: mdl-37773348

RESUMO

Long-read sequencing (LRS) techniques enable the identification of full-length RNA molecules in a single run eliminating the need for additional assembly steps. LRS research has exposed unanticipated transcriptomic complexity in various organisms, including viruses. Herpesviruses are known to produce a range of transcripts, either close to or overlapping replication origins (Oris) and neighboring genes related to transcription or replication, which possess confirmed or potential regulatory roles. In our research, we employed both new and previously published LRS and short-read sequencing datasets to uncover additional Ori-proximal transcripts in nine herpesviruses from all three subfamilies (alpha, beta and gamma). We discovered novel long non-coding RNAs, as well as splice and length isoforms of mRNAs. Moreover, our analysis uncovered an intricate network of transcriptional overlaps within the examined genomic regions. We demonstrated that herpesviruses display distinct patterns of transcriptional overlaps in the vicinity of or at the Oris. Our findings suggest the existence of a 'super regulatory center' in the genome of alphaherpesviruses that governs the initiation of both DNA replication and global transcription through multilayered interactions among the molecular machineries.


Assuntos
Herpesviridae , Origem de Replicação , Origem de Replicação/genética , Herpesviridae/genética , Transcriptoma , Perfilação da Expressão Gênica , Genômica
6.
Appl Microbiol Biotechnol ; 107(20): 6315-6324, 2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-37610465

RESUMO

The biomethane formation from 4 H2 + CO2 by pure cultures of two methanogens, Methanocaldococcus fervens and Methanobacterium thermophilum, has been studied. The goal of the study was to understand the regulation of the enzymatic steps associated with biomethane biosynthesis by H2, using metagenomic, pan-genomic, and transcriptomic approaches. Methanogenesis in the autotrophic methanogen M. fervens could be easily "switched off" and "switched on" by H2/CO2 within about an hour. In contrast, the heterotrophic methanogen M. thermophilum was practically insensitive to the addition of the H2/CO2 trigger although this methanogen also converted H2/CO2 to CH4. From practical points of view, the regulatory function of H2/CO2 suggests that in the power-to-gas (P2G) renewable excess electricity conversion and storage systems, the composition of the biomethane-generating methanogenic community is essential for sustainable operation. In addition to managing the specific hydrogenotrophic methanogenesis biochemistry, H2/CO2 affected several, apparently unrelated, metabolic pathways. The redox-regulated overall biochemistry and symbiotic relationships in the methanogenic communities should be explored in order to make the P2G technology more efficient. KEY POINTS : • Hydrogenotrophic methanogens may respond distinctly to H2/CO2 in bio-CH4 formation. • H2/CO2 can also activate metabolic routes, which are apparently unrelated to methanogenesis. • Sustainable conversion of the fluctuating renewable electricity to bio-CH4 is an option.

7.
Heliyon ; 9(7): e17716, 2023 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-37449092

RESUMO

This study employed both short-read sequencing (SRS, Illumina) and long-read sequencing (LRS Oxford Nanopore Technologies) platforms to conduct a comprehensive analysis of the equid alphaherpesvirus 1 (EHV-1) transcriptome. The study involved the annotation of canonical mRNAs and their transcript variants, encompassing transcription start site (TSS) and transcription end site (TES) isoforms, in addition to alternative splicing forms. Furthermore, the study revealed the presence of numerous non-coding RNA (ncRNA) molecules, including intergenic and antisense transcripts, produced by EHV-1. An intriguing finding was the abundant production of chimeric transcripts, some of which potentially encode fusion polypeptides. Moreover, EHV-1 exhibited a greater incidence of transcriptional overlaps and splicing compared to related viruses. It is noteworthy that many genes have their unique TESs along with the co-terminal transcription ends, a characteristic scarcely seen in other alphaherpesviruses. The study also identified transcripts that overlap the replication origins of the virus. Moreover, a novel ncRNA, referred to as NOIR, was found to intersect with the 5'-ends of longer transcript isoform specified by the major transactivator genes ORF64 and ORF65, surrounding the OriL. These findings together imply the existence of a key regulatory mechanism that governs both transcription and replication through, among others, a process that involves interference between the DNA and RNA synthesis machineries.

8.
Sci Data ; 10(1): 262, 2023 05 09.
Artigo em Inglês | MEDLINE | ID: mdl-37160911

RESUMO

The recent human Monkeypox outbreak underlined the importance of studying basic biology of orthopoxviruses. However, the transcriptome of its causative agent has not been investigated before neither with short-, nor with long-read sequencing approaches. This Oxford Nanopore long-read RNA-Sequencing dataset fills this gap. It will enable the in-depth characterization of the transcriptomic architecture of the monkeypox virus, and may even make possible to annotate novel host transcripts. Moreover, our direct cDNA and native RNA sequencing reads will allow the estimation of gene expression changes of both the virus and the host cells during the infection. Overall, our study will lead to a deeper understanding of the alterations caused by the viral infection on a transcriptome level.


Assuntos
Mpox , Sequenciamento por Nanoporos , Humanos , DNA Complementar , Perfilação da Expressão Gênica , Transcriptoma
9.
Gigascience ; 112022 10 17.
Artigo em Inglês | MEDLINE | ID: mdl-36251275

RESUMO

BACKGROUND: Recent studies have disclosed the genome, transcriptome, and epigenetic compositions of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) and the effect of viral infection on gene expression of the host cells. It has been demonstrated that, besides the major canonical transcripts, the viral genome also codes for noncanonical RNA molecules. While the structural characterizations have revealed a detailed transcriptomic architecture of the virus, the kinetic studies provided poor and often misleading results on the dynamics of both the viral and host transcripts due to the low temporal resolution of the infection event and the low virus/cell ratio (multiplicity of infection [MOI] = 0.1) applied for the infection. It has never been tested whether the alteration in the host gene expressions is caused by aging of the cells or by the viral infection. FINDINGS: In this study, we used Oxford Nanopore's direct cDNA and direct RNA sequencing methods for the generation of a high-coverage, high temporal resolution transcriptomic dataset of SARS-CoV-2 and of the primate host cells, using a high infection titer (MOI = 5). Sixteen sampling time points ranging from 1 to 96 hours with a varying time resolution and 3 biological replicates were used in the experiment. In addition, for each infected sample, corresponding noninfected samples were employed. The raw reads were mapped to the viral and to the host reference genomes, resulting in 49,661,499 mapped reads (54,62 Gbs). The genome of the viral isolate was also sequenced and phylogenetically classified. CONCLUSIONS: This dataset can serve as a valuable resource for profiling the SARS-CoV-2 transcriptome dynamics, the virus-host interactions, and the RNA base modifications. Comparison of expression profiles of the host gene in the virally infected and in noninfected cells at different time points allows making a distinction between the effect of the aging of cells in culture and the viral infection. These data can provide useful information for potential novel gene annotations and can also be used for studying the currently available bioinformatics pipelines.


Assuntos
COVID-19 , Sequenciamento por Nanoporos , Animais , COVID-19/genética , DNA Complementar/genética , Cinética , RNA , SARS-CoV-2/genética
10.
Viruses ; 14(6)2022 06 13.
Artigo em Inglês | MEDLINE | ID: mdl-35746760

RESUMO

In this work, a long-read sequencing (LRS) technique based on the Oxford Nanopore Technology MinION platform was used for quantifying and kinetic characterization of the poly(A) fraction of bovine alphaherpesvirus type 1 (BoHV-1) lytic transcriptome across a 12-h infection period. Amplification-based LRS techniques frequently generate artefactual transcription reads and are biased towards the production of shorter amplicons. To avoid these undesired effects, we applied direct cDNA sequencing, an amplification-free technique. Here, we show that a single promoter can produce multiple transcription start sites whose distribution patterns differ among the viral genes but are similar in the same gene at different timepoints. Our investigations revealed that the circ gene is expressed with immediate-early (IE) kinetics by utilizing a special mechanism based on the use of the promoter of another IE gene (bicp4) for the transcriptional control. Furthermore, we detected an overlap between the initiation of DNA replication and the transcription from the bicp22 gene, which suggests an interaction between the two molecular machineries. This study developed a generally applicable LRS-based method for the time-course characterization of transcriptomes of any organism.


Assuntos
Herpesvirus Bovino 1 , Sequenciamento por Nanoporos , Perfilação da Expressão Gênica/métodos , Herpesvirus Bovino 1/genética , Sequenciamento de Nucleotídeos em Larga Escala/métodos , Sítio de Iniciação de Transcrição , Transcriptoma
11.
Pathogens ; 10(9)2021 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-34578228

RESUMO

Vesicular stomatitis Indiana virus (VSIV) of genus Vesiculovirus, species IndianaVesiculovirus (formerly as Vesicular stomatitis virus, VSV) causes a disease in livestock that is very similar to the foot and mouth disease, thereby an outbreak may lead to significant economic loss. Long-read sequencing (LRS) -based approaches already reveal a hidden complexity of the transcriptomes in several viruses. This technique has been utilized for the sequencing of the VSIV genome, but our study is the first for the application of this technique for the profiling of the VSIV transcriptome. Since LRS is able to sequence full-length RNA molecules, it thereby provides more accurate annotation of the transcriptomes than the traditional short-read sequencing methods. The objectives of this study were to assemble the complete transcriptome of using nanopore sequencing, to ascertain cell-type specificity and dynamics of viral gene expression, and to evaluate host gene expression changes induced by the viral infection. We carried out a time-course analysis of VSIV gene expression in human glioblastoma and primate fibroblast cell lines using a nanopore-based LRS approach and applied both amplified and direct cDNA sequencing (as well as cap-selection) for a fraction of samples. Our investigations revealed that, although the VSIV genome is simple, it generates a relatively complex transcriptomic architecture. In this study, we also demonstrated that VSIV transcripts vary in structure and exhibit differential gene expression patterns in the two examined cell types.

12.
Biol Futur ; 72(2): 263-271, 2021 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-34554482

RESUMO

The biggest challenges of our era include climate change and the global fossil energy problem. Extensive utilization of renewable energy sources should be a part of the solution for both these problems. Biogas is a versatile renewable energy carrier that has the potential to substitute fossil fuels. The most frequently utilized substrates for the anaerobic digestion (AD) process include maize silage today, but there is an increasing demand for second-generation biomass sources, which are cheaper and do not interfere with the cultivation of food production. Green biomass from short rotation coppice willow (GWB) may be a promising alternative. However, to ensure feedstock quantity and quality all year round, a preservation method has to be developed. We attempted to ensilage the biomass and subsequently utilized the resulting willow-silage in batch fermenters. Various mixtures of lactic acid bacteria were employed to facilitate ensiling by inoculation of the substrate in anaerobic jars for 60 days. During the ensiling analytical investigations, (HPLC, pH, oTS/TS%) were carried out in order to follow the build-up of fermentation products. AD fermentations were assembled from the ensilaged biomass and the methane production was measured for 56 days. The total methane yields of the ensilaged biomass were 8-15% higher than that of the fresh biomass and methane production rates were also improved. Our findings suggest that ensiling is not only an excellent preservation method for willow biomass, but also stimulates its AD.


Assuntos
Biocombustíveis/provisão & distribuição , Biomassa , Fermentação/fisiologia , Salix/metabolismo , Biocombustíveis/análise , Biocombustíveis/microbiologia , Salix/enzimologia , Salix/microbiologia
13.
J Biotechnol ; 339: 53-64, 2021 Sep 20.
Artigo em Inglês | MEDLINE | ID: mdl-34371053

RESUMO

Biogas production through co-digestion of second and third generation substrates is an environmentally sustainable approach. Green willow biomass, chicken manure waste and microalgae biomass substrates were combined in the anaerobic digestion experiments. Biochemical methane potential test showed that biogas yields of co-digestions were significantly higher compared to the yield when energy willow was the sole substrate. To scale up the experiment continuous stirred-tank reactors (CSRTs) are employed, digestion parameters are monitored. Furthermore, genome-centric metagenomics approach was employed to gain functional insight into the complex anaerobic decomposing process. This revealed the importance of Firmicutes, Actinobacteria, Proteobacteria and Bacteroidetes phyla as major bacterial participants, while Methanomicrobia and Methanobacteria represented the archaeal constituents of the communities. The bacterial phyla were shown to perform the carbohydrate hydrolysis. Among the representatives of long-chain carbohydrate hydrolysing microbes Bin_61: Clostridia is newly identified metagenome assembled genome (MAG) and Bin_13: DTU010 sp900018335 is common and abundant in all CSTRs. Methanogenesis was linked to the slow-growing members of the community, where hydrogenotrophic methanogen species Methanoculleus (Bin_10) and Methanobacterium (Bin_4) predominate. A sensitive balance between H2 producers and consumers was shown to be critical for stable biomethane production and efficient waste biodegradation.


Assuntos
Reatores Biológicos , Metagenoma , Anaerobiose , Archaea/genética , Biocombustíveis , Humanos , Metano
14.
Sci Rep ; 11(1): 14487, 2021 07 14.
Artigo em Inglês | MEDLINE | ID: mdl-34262076

RESUMO

Long-read sequencing (LRS), a powerful novel approach, is able to read full-length transcripts and confers a major advantage over the earlier gold standard short-read sequencing in the efficiency of identifying for example polycistronic transcripts and transcript isoforms, including transcript length- and splice variants. In this work, we profile the human cytomegalovirus transcriptome using two third-generation LRS platforms: the Sequel from Pacific BioSciences, and MinION from Oxford Nanopore Technologies. We carried out both cDNA and direct RNA sequencing, and applied the LoRTIA software, developed in our laboratory, for the transcript annotations. This study identified a large number of novel transcript variants, including splice isoforms and transcript start and end site isoforms, as well as putative mRNAs with truncated in-frame ORFs (located within the larger ORFs of the canonical mRNAs), which potentially encode N-terminally truncated polypeptides. Our work also disclosed a highly complex meshwork of transcriptional read-throughs and overlaps.


Assuntos
Citomegalovirus/genética , Sequenciamento de Nucleotídeos em Larga Escala/métodos , Citomegalovirus/isolamento & purificação , DNA Complementar , Genes Virais , Humanos , Fases de Leitura Aberta , RNA Mensageiro/genética , Análise de Sequência de RNA/métodos , Software
15.
Microb Cell Fact ; 20(1): 127, 2021 Jul 03.
Artigo em Inglês | MEDLINE | ID: mdl-34217274

RESUMO

BACKGROUND: The molecular machinery of the complex microbiological cell factory of biomethane production is not fully understood. One of the process control elements is the regulatory role of hydrogen (H2). Reduction of carbon dioxide (CO2) by H2 is rate limiting factor in methanogenesis, but the community intends to keep H2 concentration low in order to maintain the redox balance of the overall system. H2 metabolism in methanogens becomes increasingly important in the Power-to-Gas renewable energy conversion and storage technologies. RESULTS: The early response of the mixed mesophilic microbial community to H2 gas injection was investigated with the goal of uncovering the first responses of the microbial community in the CH4 formation and CO2 mitigation Power-to-Gas process. The overall microbial composition changes, following a 10 min excessive bubbling of H2 through the reactor, was investigated via metagenome and metatranscriptome sequencing. The overall composition and taxonomic abundance of the biogas producing anaerobic community did not change appreciably 2 hours after the H2 treatment, indicating that this time period was too short to display differences in the proliferation of the members of the microbial community. There was, however, a substantial increase in the expression of genes related to hydrogenotrophic methanogenesis of certain groups of Archaea. As an early response to H2 exposure the activity of the hydrogenotrophic methanogenesis in the genus Methanoculleus was upregulated but the hydrogenotrophic pathway in genus Methanosarcina was downregulated. The RT-qPCR data corroborated the metatranscriptomic RESULTS: H2 injection also altered the metabolism of a number of microbes belonging in the kingdom Bacteria. Many Bacteria possess the enzyme sets for the Wood-Ljungdahl pathway. These and the homoacetogens are partners for syntrophic community interactions between the distinct kingdoms of Archaea and Bacteria. CONCLUSIONS: External H2 regulates the functional activity of certain Bacteria and Archaea. The syntrophic cross-kingdom interactions in H2 metabolism are important for the efficient operation of the Power-to-Gas process. Therefore, mixed communities are recommended for the large scale Power-to-Gas process rather than single hydrogenotrophic methanogen strains. Fast and reproducible response from the microbial community can be exploited in turn-off and turn-on of the Power-to-Gas microbial cell factories.


Assuntos
Hidrogênio/metabolismo , Metano/biossíntese , Methanomicrobiaceae/metabolismo , Methanosarcina/metabolismo , Transcriptoma , Anaerobiose , Bactérias/genética , Bactérias/metabolismo , Dióxido de Carbono/metabolismo , Fermentação , Regulação da Expressão Gênica em Archaea , Genoma Arqueal , Metagenoma , Metagenômica , Methanomicrobiaceae/genética , Methanosarcina/genética , Microbiota
16.
Bioresour Technol ; 333: 125223, 2021 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-33940504

RESUMO

Short rotation plantations of willow genotypes, harvested in vegetative growth phases, were tested as an alternative biomass for methane production. The substrate characteristics, maximal methane yields (K) and highest methane production rates (µmax) were determined. Leaves and stems from diploid Energo (EN) and tetraploid (PP) plants, harvested in June were superior methane sources to woody tissue. This could be related to the lower lignin contents in green willow. Fermentation of pooled biomasses from tetraploid genotypes harvested in June-August was more efficient than methane production from diploid tissues. Microbial community analyses by 16S rRNA genes showed a dominance of the order Clostridiales. In field study, based on Energo plantation, the maximum in green biomass accumulation was in early month 9 of the vegetation period. A theoretical calculation showed similar or better energy potential per unit area for willow than in the case of maize silage. This study encourages the use of green willow biomass as feedstock in biomethanation processes due to its relatively low production costs and uncomplicated agricultural practice.


Assuntos
Salix , Anaerobiose , Biocombustíveis , Biomassa , Genótipo , Metano , RNA Ribossômico 16S , Rotação , Salix/genética
17.
PLoS One ; 16(3): e0248654, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33730081

RESUMO

Annually, agricultural activity produces an enormous amount of plant biomass by-product. Many studies have reported the biomethane potential of agro-industrial wastes, but only a few studies have investigated applying the substrates in both batch and continuous mode. Tomato is one of the most popular vegetables globally; its processing releases a substantial amount of by-product, such as stems and leaves. This study examined the BMP of tomato plant (Solanum lycopersicum Mill. L. cv. Alfred) waste. A comparative test revealed that the BMPs of corn stover, tomato waste,and their combination were approximately the same, around 280 mL methane/g Volatile Solid. In contrast, the relative biogas production decreased in the presence of tomato waste in a continuous mesophilic anaerobic digestion system; the daily biogas productions were 860 ± 80, 290 ± 50, and 570 ± 70 mL biogas/gVolatile Solid/day in the case of corn stover, tomato waste, and their mixture, respectively. The methane content of biogas was around 46-48%. The fermentation parameters of the continuous AD experiments were optimal in all cases; thus, TW might have an inhibitory effect on the microbial community. Tomato plant materials contain e.g. flavonoids, glycoalkaloids (such as tomatine and tomatidine), etc. known as antimicrobial and antifungal agents. The negative effect of tomatine on the biogas yield was confirmed in batch fermentation experiments. Metagenomic analysis revealed that the tomato plant waste caused significant rearrangements in the microbial communities in the continuously operated reactors. The results demonstrated that tomato waste could be a good mono-substrate in batch fermentations or a co-substrate with corn stover in a proper ratio in continuous anaerobic fermentations for biogas production. These results also point to the importance of running long-term continuous fermentations to test the suitability of a novel biomass substrate for industrial biogas production.


Assuntos
Biocombustíveis , Reatores Biológicos/microbiologia , Produção Agrícola , Metano/biossíntese , Solanum lycopersicum/química , Anaerobiose , Fermentação , Solanum lycopersicum/microbiologia , Metagenômica , Microbiota/genética , Zea mays/química , Zea mays/microbiologia
18.
Front Microbiol ; 9: 2285, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30319585

RESUMO

The cow rumen harbors a great variety of diverse microbes, which form a complex, organized community. Understanding the behavior of this multifarious network is crucial in improving ruminant nutrient use efficiency. The aim of this study was to expand our knowledge by examining 10 Holstein dairy cow rumen fluid fraction whole metagenome and transcriptome datasets. DNA and mRNA sequence data, generated by Ion Torrent, was subjected to quality control and filtering before analysis for core elements. The taxonomic core microbiome consisted of 48 genera belonging to Bacteria (47) and Archaea (1). The genus Prevotella predominated the planktonic core community. Core functional groups were identified using co-occurrence analysis and resulted in 587 genes, from which 62 could be assigned to metabolic functions. Although this was a minimal functional core, it revealed key enzymes participating in various metabolic processes. A diverse and rich collection of enzymes involved in carbohydrate metabolism and other functions were identified. Transcripts coding for enzymes active in methanogenesis made up 1% of the core functions. The genera associated with the core enzyme functions were also identified. Linking genera to functions showed that the main metabolic pathways are primarily provided by Bacteria and several genera may serve as a "back-up" team for the central functions. The key actors in most essential metabolic routes belong to the genus Prevotella. Confirming earlier studies, the genus Methanobrevibacter carries out the overwhelming majority of rumen methanogenesis and therefore methane emission mitigation seems conceivable via targeting the hydrogenotrophic methanogenesis.

19.
Anaerobe ; 46: 78-85, 2017 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-28576713

RESUMO

Corn stover (CS) is the agricultural by-product of maize cultivation. Due to its high abundance and high energy content it is a promising substrate for the bioenergy sector. However, it is currently neglected in industrial scale biogas plants, because of its slow decomposition and hydrophobic character. To assess the maximum biomethane potential of CS, long-term batch fermentations were carried out with various substrate concentrations and particle sizes for 72 days. In separate experiments we adapted the biogas producing microbial community in wet fermentation arrangement first to the lignocellulosic substrate, in Continuous Stirred Tank Reactor (CSTR), then subsequently, by continuously elevating the feed-in concentration, to dry conditions in solid state fermenters (SS-AD). In the batch tests, the <10 mm fraction of the grinded and sieved CS was amenable for biogasification, but it required 10% more time to produce 90% of the total biomethane yield than the <2 mm sized fraction, although in the total yields there was no significant difference between the two size ranges. We also observed that increasing amount of substrate added to the fermentation lowered the specific methane yield. In the CSTR experiment, the daily substrate loading was gradually increased from 1 to 2 gvs/L/day until the system produced signs of overloading. Then the biomass was transferred to SS-AD reactors and the adaptation process was studied. Although the specific methane yields were lower in the SS-AD arrangement (177 mL CH4/gvs in CSTR vs. 105 mL in SS-AD), the benefits of process operational parameters, i.e. lower energy consumption, smaller reactor volume, digestate amount generated and simpler configuration, may compensate the somewhat lower yield.


Assuntos
Biocombustíveis , Reatores Biológicos , Fermentação , Resíduos , Zea mays , Anaerobiose , Metano
20.
Anaerobe ; 46: 13-22, 2017 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-28341558

RESUMO

Results in three areas of anaerobic microbiology in which methane formation and utilization plays central part are reviewed. a.) Bio-methane formation by reduction of carbon dioxide in the power-to-gas process and the various possibilities of improvement of the process is a very intensively studied topic recently. From the numerous potential methods of exploiting methane of biological origin two aspects are discussed in detail. b.) Methane can serve as a platform chemical in various chemical and biochemical synthetic processes. Particular emphasis is put on the biochemical conversion pathways involving methanotrophs and their methane monooxygenase-catalyzed reactions leading to various small molecules and polymeric materials such as extracellular polysaccharides, polyhydroxyalkanoates and proteins. c.) The third area covered concerns methane-consuming reactions and methane emission mitigation. These investigations comprise the anaerobic microbiology of ruminants and approaches to diminishing methane emissions from ruminant animals.


Assuntos
Biocombustíveis , Metano/biossíntese , Anaerobiose , Animais , Fenômenos Bioquímicos , Biotransformação , Dióxido de Carbono , Fermentação , Gases de Efeito Estufa , Humanos , Plantas/metabolismo , Energia Renovável
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA