Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Front Microbiol ; 15: 1364026, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38562479

RESUMO

Shiga toxin (Stx)-producing Escherichia coli (STEC) of non-O157:H7 serotypes are responsible for global and widespread human food-borne disease. Among these serogroups, O26, O45, O103, O111, O121, and O145 account for the majority of clinical infections and are colloquially referred to as the "Big Six." The "Big Six" strain panel we sequenced and analyzed in this study are reference type cultures comprised of six strains representing each of the non-O157 STEC serogroups curated and distributed by the American Type Culture Collection (ATCC) as a resource to the research community under panel number ATCC MP-9. The application of long- and short-read hybrid sequencing yielded closed chromosomes and a total of 14 plasmids of diverse functions. Through high-resolution comparative phylogenomics, we cataloged the shared and strain-specific virulence and resistance gene content and established the close relationship of serogroup O26 and O103 strains featuring flagellar H-type 11. Virulence phenotyping revealed statistically significant differences in the Stx-production capabilities that we found to be correlated to the strain's individual stx-status. Among the carried Stx1a, Stx2a, and Stx2d phages, the Stx2a phage is by far the most responsive upon RecA-mediated phage mobilization, and in consequence, stx2a + isolates produced the highest-level of toxin in this panel. The availability of high-quality closed genomes for this "Big Six" reference set, including carried plasmids, along with the recorded genomic virulence profiles and Stx-production phenotypes will provide a valuable foundation to further explore the plasticity in evolutionary trajectories in these emerging non-O157 STEC lineages, which are major culprits of human food-borne disease.

2.
Microorganisms ; 12(4)2024 Mar 29.
Artigo em Inglês | MEDLINE | ID: mdl-38674643

RESUMO

Shiga toxin-producing Escherichia coli are zoonotic pathogens that cause food-borne human disease. Among these, the O157:H7 serotype has evolved from an enteropathogenic O55:H7 ancestor through the displacement of the somatic gene cluster and recurrent toxigenic conversion by Shiga toxin-converting bacteriophages. However, atypical strains that lack the Shiga toxin, the characteristic virulence hallmark, are circulating in this lineage. For this study, we analyzed the pathogenome and virulence inventories of the stx+ strain, TT12A, isolated from a patient with hemorrhagic colitis, and its respective co-isolated stx- strain, TT12B. Sequencing the genomes to closure proved critical to the cataloguing of subtle strain differentiating sequence and structural polymorphisms at a high-level of phylogenetic accuracy and resolution. Phylogenomic profiling revealed SNP and MLST profiles similar to the near clonal outbreak isolates. Their prophage inventories, however, were notably different. The attenuated atypical non-shigatoxigenic status of TT12B is explained by the absence of both the ΦStx1a- and ΦStx2a-prophages carried by TT12A, and we also recorded further alterations in the non-Stx prophage complement. Phenotypic characterization indicated that culture growth was directly impacted by the strains' distinct lytic phage complement. Altogether, our phylogenomic and phenotypic analyses show that these intimately related isogenic strains are on divergent Stx(+/stx-) evolutionary paths.

3.
Front Microbiol ; 14: 1250265, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37808309

RESUMO

Diseases caused by the zoonotic pathogen Streptococcus suis are an extensive economic problem as well as an animal welfare concern for the global swine industry. Previous studies have evaluated the genomic diversity and population structure of S. suis isolates, however, the majority of these studies utilized isolates obtained from countries other than the U.S. This study applied whole genome sequencing and cgMLST-based typing to evaluate the population structure and genetic relatedness among S. suis isolates obtained within the U.S. The established high-resolution phylogenomic framework revealed extensive genomic variation and diversity among the sampled S. suis isolates, with isolates from the U.S. and from countries outside the U.S. found interspersed in the phylogeny. S. suis isolates obtained within the U.S. did not cluster by state or geographic location, however, isolates with similar serotypes, both obtained from within and outside the U.S., generally clustered together. Average nucleotide identity (ANI) values determined for the S. suis genomes were extensively broad, approaching the recommended species demarcation value, and correlated with the phylogenetic group distribution of the cgMLST-based tree. Numerous antimicrobial resistance (AMR) elements were identified among both U.S. and non-U.S. isolates with ble, tetO, and ermB genes identified as the most prevalent. The epf, mrp, and sly genes, historically used as markers for virulence potential, were also observed in the genomes of isolates that grouped together forming a subclade of clonal complex 1 (CC1) isolates. Collectively, the data in this report provides critical information needed to address potential biosurveillance needs and insights into the genetic diversity and population structure of S. suis isolates obtained within the U.S.

4.
Front Cell Infect Microbiol ; 12: 888568, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35770066

RESUMO

A laboratory-acquired E. coli O157:H7 infection with associated severe sequelae including hemolytic uremic syndrome occurred in an individual working in the laboratory with a mixture of nalidixic acid-resistant (NalR) O157:H7 mutant strains in a soil-biochar blend. The patient was hospitalized and treated with an intravenous combination of metronidazole and levofloxacin. The present study investigated the source of this severe laboratory acquired infection and further examined the influence of the antibiotics used during treatment on the expression and production of Shiga toxin. Genomes of two Stx2a-and eae-positive O157:H7 strains isolated from the patient's stool were sequenced along with two pairs of the wt strains and their derived NalR mutants used in the laboratory experiments. High-resolution SNP typing determined the strains' individual genetic relatedness and unambiguously identified the two laboratory-derived NalR mutant strains as the source of the researcher's life-threatening disease, rather than a conceivable ingestion of unrelated O157:H7 isolates circulating at the same time. It was further confirmed that in sublethal doses, the antibiotics increased toxin expression and production. Our results support a simultaneous co-infection with clinical strains in the laboratory, which were the causative agents of previous O157:H7 outbreaks, and further that the administration of antibiotics may have impacted the outcome of the infection.


Assuntos
Infecções por Escherichia coli , Escherichia coli O157 , Infecção Laboratorial , Antibacterianos/farmacologia , Escherichia coli O157/genética , Humanos , Análise de Sequência , Toxina Shiga II/genética
5.
Vet Sci ; 9(1)2021 Dec 24.
Artigo em Inglês | MEDLINE | ID: mdl-35051089

RESUMO

An adult female osprey (Pandion haliaetus) was found weak and unable to fly in Auburn, Alabama in August 2019. The bird was captured and submitted to the Southeastern Raptor Center of the Auburn University College of Veterinary Medicine for evaluation. On presentation, the bird was thin with a body condition score of approximately 1.5 out of 5. The bird died during the examination and was submitted for necropsy. At the necropsy, there was a severe loss of muscle mass over the body, and the keel was prominent. The liver and spleen were moderately enlarged with pale tan to red foci randomly scattered throughout the parenchyma. A histopathologic observation revealed multifocal to coalescing areas of necrosis and hemorrhage with intralesional protozoans in the liver, spleen, lungs, kidney, sciatic nerve, esophagus, cerebrum, heart, and proventriculus. Immunohistochemistry using anti-Toxoplasma gondii-specific antibodies showed a strong positive labeling of the parasite. Semi-nested PCR, specific for the B1 gene of T. gondii, successfully identified T. gondii. This is the first confirmed case of T. gondii infection in an osprey.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA