RESUMO
Inherited retinal diseases (IRDs) are characterized by progressive vision loss. There are over 270 causative IRD genes, and variants within the same gene can cause clinically distinct disorders. One example is RLBP1, which encodes CRALBP. CRALBP is an essential protein in the rod and cone visual cycles that take place primarily in the retinal pigment epithelium (RPE) but also in Müller cells of the neuroretina. RLBP1 variants lead to three clinical subtypes: Bothnia dystrophy, retinitis punctata albescens, and Newfoundland rod-cone dystrophy. We modeled RLBP1-IRD subtypes using patient-specific induced pluripotent stem cell (iPSC)-derived RPE and identified pathophysiological markers that served as pertinent therapeutic read-outs. We developed an AAV2/5-mediated gene-supplementation strategy and performed a proof-of-concept study in the human models, which was validated in vivo in an Rlbp1-/- murine model. Most importantly, we identified a previously unsuspected smaller CRALBP isoform that is naturally and differentially expressed both in the human and murine retina. This previously unidentified isoform is produced from an alternative methionine initiation site. This work provides further insights into CRALBP expression and RLBP1-associated pathophysiology and raises important considerations for successful gene-supplementation therapy.
RESUMO
Variants in rhodopsin (RHO) have been linked to autosomal dominant congenital stationary night blindness (adCSNB), which affects the ability to see in dim light, and the pathogenetic mechanism is still not well understood. In this study we report two novel RHO variants found in adCSNB families, p.W265R and p.A269V, that map in the sixth transmembrane domain of RHO protein. We applied in silico molecular simulation and in vitro biochemical and molecular studies to characterize the two new variants and compare the molecular determinants to two previously characterized adCSNB variants, p.G90D and p.T94I, that map in the second transmembrane domain of the RHO protein. We demonstrate that W265R and A269V cause constitutive activation of RHO with light-independent G protein coupling and impaired binding to arrestin. Differently, G90D and T94I are characterized by slow kinetics of RHO activation and deactivation. This study provides new evidence on the differential contribution of transmembrane α-helixes two and six to the interaction with intracellular transducers of RHO and mutations in these helixes result in a similar phenotype in patients but with distinct molecular effects.
Assuntos
Mutação , Cegueira Noturna , Rodopsina , Rodopsina/genética , Rodopsina/química , Rodopsina/metabolismo , Humanos , Cegueira Noturna/genética , Cegueira Noturna/metabolismo , Miopia/genética , Miopia/metabolismo , Oftalmopatias Hereditárias/genética , Oftalmopatias Hereditárias/metabolismo , Conformação Proteica em alfa-Hélice , Doenças Genéticas Ligadas ao Cromossomo X/genética , Masculino , Feminino , Linhagem , Ligação Proteica , Modelos Moleculares , Arrestina/genética , Arrestina/metabolismo , Arrestina/químicaRESUMO
X-linked retinitis pigmentosa (XLRP) is characterized by progressive vision loss leading to legal blindness in males and a broad severity spectrum in carrier females. Pathogenic alterations of the retinitis pigmentosa GTPase regulator gene (RPGR) are responsible for over 70% of XLRP cases. In the retina, the RPGRORF15 transcript includes a terminal exon, called ORF15, that is altered in the large majority of RPGR-XLRP cases. Unfortunately, due to its highly repetitive sequence, ORF15 represents a considerable challenge in terms of sequencing for molecular diagnostic laboratories. However, in a recent preliminary work Yahya et al. reported a long-read sequencing approach seeming promising. Here, the aim of the study was to validate and integrate this new sequencing strategy in a routine screening workflow. For that purpose, we performed a masked test on 52 genomic DNA samples from male and female individuals carrying 32 different pathogenic ORF15 variations including 20 located in the highly repetitive region of the exon. For the latter, we have obtained a detection rate of 80-85% in males and 60-80% in females after bioinformatic analyses. These numbers raised to 100% for both status after adding a complementary visual inspection of ORF15 long-reads. In accordance with these results, and considering the frequency of ORF15 pathogenic variations in XLRP, we suggest that a long-read screening of ORF15 should be systematically considered before any other sequencing approach in subjects with a diagnosis compatible with XLRP.
RESUMO
Retinitis pigmentosa (RP) is the most common inherited retinal disease (IRD) and is characterized by photoreceptor degeneration and progressive vision loss. We report 4 patients presenting with RP from 3 unrelated families with variants in TBC1D32, which to date has never been associated with an IRD. To validate TBC1D32 as a putative RP causative gene, we combined Xenopus in vivo approaches and human induced pluripotent stem cell-derived (iPSC-derived) retinal models. Our data showed that TBC1D32 was expressed during retinal development and that it played an important role in retinal pigment epithelium (RPE) differentiation. Furthermore, we identified a role for TBC1D32 in ciliogenesis of the RPE. We demonstrated elongated ciliary defects that resulted in disrupted apical tight junctions, loss of functionality (delayed retinoid cycling and altered secretion balance), and the onset of an epithelial-mesenchymal transition-like phenotype. Last, our results suggested photoreceptor differentiation defects, including connecting cilium anomalies, that resulted in impaired trafficking to the outer segment in cones and rods in TBC1D32 iPSC-derived retinal organoids. Overall, our data highlight a critical role for TBC1D32 in the retina and demonstrate that TBC1D32 mutations lead to RP. We thus identify TBC1D32 as an IRD-causative gene.
Assuntos
Células-Tronco Pluripotentes Induzidas , Degeneração Retiniana , Retinose Pigmentar , Humanos , Retina , Retinose Pigmentar/genética , Degeneração Retiniana/genética , Epitélio Pigmentado da Retina , Proteínas Adaptadoras de Transdução de SinalRESUMO
There is an emblematic clinical and genetic heterogeneity associated with inherited retinal diseases (IRDs). The most common form is retinitis pigmentosa (RP), a rod-cone dystrophy caused by pathogenic variants in over 80 different genes. Further complexifying diagnosis, different variants in individual RP genes can also alter the clinical phenotype. USH2A is the most prevalent gene for autosomal-recessive RP and one of the most challenging because of its large size and, hence, large number of variants. Moreover, USH2A variants give rise to non-syndromic and syndromic RP, known as Usher syndrome (USH) type 2, which is associated with vision and hearing loss. The lack of a clear genotype-phenotype correlation or prognostic models renders diagnosis highly challenging. We report here a long-awaited differential non-syndromic RP and USH phenotype in three human disease-specific models: fibroblasts, induced pluripotent stem cells (iPSCs), and mature iPSC-derived retinal organoids. Moreover, we identified distinct retinal phenotypes in organoids from multiple RP and USH individuals, which were validated by isogenic-corrected controls. Non-syndromic RP organoids showed compromised photoreceptor differentiation, whereas USH organoids showed a striking and unexpected cone phenotype. Furthermore, complementary clinical investigations identified macular atrophy in a high proportion of USH compared with RP individuals, further validating our observations that USH2A variants differentially affect cones. Overall, identification of distinct non-syndromic RP and USH phenotypes in multiple models provides valuable and robust readouts for testing the pathogenicity of USH2A variants as well as the efficacy of therapeutic approaches in complementary cell types.
Assuntos
Retinose Pigmentar , Síndromes de Usher , Humanos , Síndromes de Usher/diagnóstico , Retinose Pigmentar/diagnóstico , Organoides , Fenótipo , Proteínas da Matriz Extracelular/genéticaRESUMO
DFNA68 is a rare subtype of autosomal dominant nonsyndromic hearing impairment caused by heterozygous alterations in the HOMER2 gene. To date, only 5 pathogenic or likely pathogenic coding variants, including two missense substitutions (c.188 C > T and c.587 G > C), a single base pair duplication (c.840dupC) and two short deletions (c.592_597delACCACA and c.832_836delCCTCA) have been described in 5 families. In this study, we report a novel HOMER2 variation, identified by massively parallel sequencing, in a Sicilian family suffering from progressive dominant hearing loss over 3 generations. This novel alteration is a nonstop substitution (c.1064 A > G) that converts the translational termination codon (TAG) of the gene into a tryptophan codon (TGG) and is predicted to extend the HOMER2 protein by 10 amino acids. RNA analyses from the proband suggested that HOMER2 transcripts carrying the nonstop variant escaped the non-stop decay pathway. Finally, in vivo studies using a zebrafish animal model and behavioral tests clearly established the deleterious impact of this novel HOMER2 alteration on hearing function. This study identifies the fourth causal variation responsible for DFNA68 and describes a simple in vivo approach to assess the pathogenicity of candidate HOMER2 variants.
Assuntos
Surdez , Perda Auditiva Neurossensorial , Perda Auditiva , Animais , Códon de Terminação , Surdez/genética , Perda Auditiva/genética , Perda Auditiva Neurossensorial/genética , Mutação , Linhagem , Peixe-Zebra/genéticaRESUMO
SpliceAI is an open-source deep learning splicing prediction algorithm that has demonstrated in the past few years its high ability to predict splicing defects caused by DNA variations. However, its outputs present several drawbacks: (1) although the numerical values are very convenient for batch filtering, their precise interpretation can be difficult, (2) the outputs are delta scores which can sometimes mask a severe consequence, and (3) complex delins are most often not handled. We present here SpliceAI-visual, a free online tool based on the SpliceAI algorithm, and show how it complements the traditional SpliceAI analysis. First, SpliceAI-visual manipulates raw scores and not delta scores, as the latter can be misleading in certain circumstances. Second, the outcome of SpliceAI-visual is user-friendly thanks to the graphical presentation. Third, SpliceAI-visual is currently one of the only SpliceAI-derived implementations able to annotate complex variants (e.g., complex delins). We report here the benefits of using SpliceAI-visual and demonstrate its relevance in the assessment/modulation of the PVS1 classification criteria. We also show how SpliceAI-visual can elucidate several complex splicing defects taken from the literature but also from unpublished cases. SpliceAI-visual is available as a Google Colab notebook and has also been fully integrated in a free online variant interpretation tool, MobiDetails ( https://mobidetails.iurc.montp.inserm.fr/MD ).
Assuntos
Algoritmos , Splicing de RNA , Humanos , Splicing de RNA/genéticaRESUMO
Several pathogenic variants have been reported in the IMPG1 gene associated with the inherited retinal disorders vitelliform macular dystrophy (VMD) and retinitis pigmentosa (RP). IMPG1 and its paralog IMPG2 encode for two proteoglycans, SPACR and SPACRCAN, respectively, which are the main components of the interphotoreceptor matrix (IPM), the extracellular matrix surrounding the photoreceptor cells. To determine the role of SPACR in the pathological mechanisms leading to RP and VMD, we generated a knockout mouse model lacking Impg1, the mouse ortholog. Impg1-deficient mice show abnormal accumulation of autofluorescent deposits visible by fundus imaging and spectral-domain optical coherence tomography (SD-OCT) and attenuated electroretinogram responses from 9 months of age. Furthermore, SD-OCT of Impg1-/- mice shows a degeneration of the photoreceptor layer, and transmission electron microscopy shows a disruption of the IPM and the retinal pigment epithelial cells. The decrease in the concentration of the chromophore 11-cis-retinal supports this loss of photoreceptors. In conclusion, our results demonstrate the essential role of SPACR in maintaining photoreceptors. Impg1-/- mice provide a novel model for mechanistic investigations and the development of therapies for VMD and RP caused by IMPG1 pathogenic variants.
Assuntos
Proteínas da Matriz Extracelular , Proteínas do Olho , Proteoglicanas , Retinose Pigmentar , Distrofia Macular Viteliforme , Animais , Matriz Extracelular/genética , Matriz Extracelular/patologia , Proteínas da Matriz Extracelular/genética , Proteínas do Olho/genética , Camundongos , Células Fotorreceptoras/patologia , Proteoglicanas/genética , Epitélio Pigmentado da Retina/patologia , Pigmentos da Retina , Retinaldeído , Retinose Pigmentar/genética , Retinose Pigmentar/patologia , Distrofia Macular Viteliforme/genéticaRESUMO
BACKGROUND: Human-induced pluripotent stem cell-derived retinal organoids are a valuable tool for disease modelling and therapeutic development. Many efforts have been made over the last decade to optimise protocols for the generation of organoids that correctly mimic the human retina. Most protocols use common media supplements; however, protocol-dependent variability impacts data interpretation. To date, the lack of a systematic comparison of a given protocol with or without supplements makes it difficult to determine how they influence the differentiation process and morphology of the retinal organoids. METHODS: A 2D-3D differentiation method was used to generate retinal organoids, which were cultured with or without the most commonly used media supplements, notably retinoic acid. Gene expression was assayed using qPCR analysis, protein expression using immunofluorescence studies, ultrastructure using electron microscopy and 3D morphology using confocal and biphoton microscopy of whole organoids. RESULTS: Retinoic acid delayed the initial stages of differentiation by modulating photoreceptor gene expression. At later stages, the presence of retinoic acid led to the generation of mature retinal organoids with a well-structured stratified photoreceptor layer containing a predominant rod population. By contrast, the absence of retinoic acid led to cone-rich organoids with a less organised and non-stratified photoreceptor layer. CONCLUSIONS: This study proves the importance of supplemented media for culturing retinal organoids. More importantly, we demonstrate for the first time that the role of retinoic acid goes beyond inducing a rod cell fate to enhancing the organisation of the photoreceptor layer of the mature organoid.
Assuntos
Células-Tronco Pluripotentes Induzidas , Organoides , Diferenciação Celular , Humanos , Organoides/metabolismo , Retina/metabolismo , Tretinoína/farmacologiaRESUMO
We report here the generation of the human iPSC line INMi005-A from a patient with non-syndromic autosomal recessive retinitis pigmentosa caused by compound heterozygous mutations in the USH2A gene. The reprogramming of primary human dermal fibroblasts was performed using the non-integrative Sendai virus method and the OSKM transcription factor cocktail. The generated INMi005-A iPSC line is pluripotent and genetically stable, and will represent a valuable tool for understanding the pathophysiology associated with USH2A mutations.
Assuntos
Células-Tronco Pluripotentes Induzidas , Retinose Pigmentar , Síndromes de Usher , Proteínas da Matriz Extracelular/genética , Humanos , Mutação/genética , Retinose Pigmentar/genética , Síndromes de Usher/genéticaRESUMO
GSDME, also known as DFNA5, is a gene implicated in autosomal dominant nonsyndromic hearing loss (ADNSHL), affecting, at first, the high frequencies with a subsequent progression over all frequencies. To date, all the GSDME pathogenic variants associated with deafness lead to skipping of exon 8. In two families with apparent ADNSHL, massively parallel sequencing (MPS) integrating a coverage-based method for detection of copy number variations (CNVs) was applied, and it identified the first two causal GSDME structural variants affecting exon 8. The deleterious impact of the c.991-60_1095del variant, which includes the acceptor splice site sequence of exon 8, was confirmed by the study of the proband's transcripts. The second mutational event is a complex rearrangement that deletes almost all of the exon 8 sequence. This study increases the mutational spectrum of the GSDME gene and highlights the crucial importance of MPS data for the detection of GSDME exon 8 deletions, even though the identification of a causal single-exon CNV by MPS analysis is still challenging.
RESUMO
Alterations of the transmembrane channel-like 1 gene (TMC1) are involved in autosomal recessive and dominant nonsyndromic hearing loss (NSHL). To date, up to 117 causal variants including substitutions, insertions and splice variants have been reported in families from different populations. In a patient suffering from severe prelingual NSHL, we identified, in the homozygous state, the previously considered likely benign synonymous c.627C>T; p.(Leu209=) substitution. We used in silico tools predicting variant-induced alterations of splicing regulatory elements (SREs) and pinpointed this transition as a candidate splice-altering variation. Functional splicing analysis, using a minigene assay, confirmed that the variant altered a critical regulatory sequence which is essential for the exon 11 inclusion in the TMC1 transcripts. This result was reinforced by the analysis of orthologous TMC1 mammalian sequences for which the deleterious effect on the mRNA processing of a native thymidine was always counteracted by the presence of a stronger donor splice site or additional enhancer motifs. This study demonstrates, for the first time, the pathogenicity of the c.627C>T alteration leading to its reclassification as a causal variant impacting SREs and highlights the major importance of exhaustive studies to accurately evaluate the pathogenicity of a variant, regardless of the variation type.
Assuntos
Perda Auditiva Neurossensorial/genética , Proteínas de Membrana/genética , Splicing de RNA , Criança , Genes Recessivos , Células HEK293 , Perda Auditiva Neurossensorial/patologia , Humanos , Masculino , Proteínas de Membrana/metabolismo , Mutação Puntual , Sítios de Splice de RNARESUMO
The ability to reprogram somatic cells into induced pluripotent stem cells (iPSCs) was developed in 2006 and represented a major breakthrough in stem cell research. A more recent milestone in biomedical research was reached in 2013 when the CRISPR/Cas9 system was used to edit the genome of mammalian cells. The coupling of both human (h)iPSCs and CRISPR/Cas9 technology offers great promise for cell therapy and regenerative medicine. However, several limitations including time and labor consumption, efficiency and efficacy of the system, and the potential off-targets effects induced by the Cas9 nuclease still need to be addressed. Here, we describe a detailed method for easily engineering genetic changes in hiPSCs, using a nucleofection-mediated protocol to deliver the CRISPR/Cas9 components into the cells, and discuss key points to be considered when designing your experiment. The clonal, genome-edited hiPSC line generated via our method can be directly used for downstream applications.
Assuntos
Edição de Genes , Células-Tronco Pluripotentes Induzidas , Animais , Sistemas CRISPR-Cas/genética , Células Cultivadas , Edição de Genes/métodos , Humanos , Células-Tronco Pluripotentes Induzidas/metabolismo , Mamíferos/genéticaRESUMO
Usher syndrome is an autosomal recessive disorder characterized by congenital hearing loss combined with retinitis pigmentosa, and in some cases, vestibular areflexia. Three clinical subtypes are distinguished, and MYO7A and USH2A represent the two major causal genes involved in Usher type I, the most severe form, and type II, the most frequent form, respectively. Massively parallel sequencing was performed on a cohort of patients in the context of a molecular diagnosis to confirm clinical suspicion of Usher syndrome. We report here 231 pathogenic MYO7A and USH2A genotypes identified in 73 Usher type I and 158 Usher type II patients. Furthermore, we present the ACMG classification of the variants, which comprise all types. Among them, 68 have not been previously reported in the literature, including 12 missense and 16 splice variants. We also report a new deep intronic variant in USH2A. Despite the important number of molecular studies published on these two genes, we show that during the course of routine genetic diagnosis, undescribed variants continue to be identified at a high rate. This is particularly pertinent in the current era, where therapeutic strategies based on DNA or RNA technologies are being developed.
Assuntos
Proteínas da Matriz Extracelular/genética , Genótipo , Mutação de Sentido Incorreto , Miosina VIIa/genética , Sítios de Splice de RNA , Síndromes de Usher , Adulto , Feminino , França , Humanos , Masculino , Síndromes de Usher/classificação , Síndromes de Usher/genéticaRESUMO
Pathogenic variants in CRB1 lead to diverse recessive retinal disorders from severe Leber congenital amaurosis to isolated macular dystrophy. Until recently, no clear phenotype-genotype correlation and no appropriate mouse models existed. Herein, we reappraise the phenotype-genotype correlation of 50 patients with regards to the recently identified CRB1 isoforms: a canonical long isoform A localized in Müller cells (12 exons) and a short isoform B predominant in photoreceptors (7 exons). Twenty-eight patients with early onset retinal dystrophy (EORD) consistently had a severe Müller impairment, with variable impact on the photoreceptors, regardless of isoform B expression. Among them, two patients expressing wild type isoform B carried one variant in exon 12, which specifically damaged intracellular protein interactions in Müller cells. Thirteen retinitis pigmentosa patients had mainly missense variants in laminin G-like domains and expressed at least 50% of isoform A. Eight patients with the c.498_506del variant had macular dystrophy. In one family homozygous for the c.1562C>T variant, the brother had EORD and the sister macular dystrophy. In contrast with the mouse model, these data highlight the key role of Müller cells in the severity of CRB1-related dystrophies in humans, which should be taken into consideration for future clinical trials.
Assuntos
Células Ependimogliais/patologia , Proteínas do Olho/genética , Proteínas do Olho/metabolismo , Degeneração Macular/patologia , Proteínas de Membrana/genética , Proteínas de Membrana/metabolismo , Mutação , Proteínas do Tecido Nervoso/genética , Proteínas do Tecido Nervoso/metabolismo , Distrofias Retinianas/patologia , Retinose Pigmentar/patologia , Adolescente , Idade de Início , Processamento Alternativo , Criança , Pré-Escolar , Células Ependimogliais/metabolismo , Proteínas do Olho/química , Feminino , Estudos de Associação Genética , Humanos , Lactente , Degeneração Macular/genética , Degeneração Macular/metabolismo , Masculino , Proteínas de Membrana/química , Modelos Moleculares , Mutação de Sentido Incorreto , Proteínas do Tecido Nervoso/química , Mutação Puntual , Distrofias Retinianas/genética , Distrofias Retinianas/metabolismo , Retinose Pigmentar/genética , Retinose Pigmentar/metabolismo , Estudos Retrospectivos , Deleção de Sequência , Adulto JovemRESUMO
Choroideremia is an inherited retinal disease characterised by a degeneration of the light-sensing photoreceptors, supporting retinal pigment epithelium and underlying choroid. Patients present with the same symptoms as those with classic rod-cone dystrophy: (1) night blindness early in life; (2) progressive peripheral visual field loss, and (3) central vision decline with a slow progression to legal blindness. Choroideremia is monogenic and caused by mutations in CHM. Eight clinical trials (three phase 1/2, four phase 2, and one phase 3) have started (four of which are already finished) to evaluate the therapeutic efficacy of gene supplementation mediated by subretinal delivery of an adeno-associated virus serotype 2 (AAV2/2) vector expressing CHM. Furthermore, one phase 1 clinical trial has been initiated to evaluate the efficiency of a novel AAV variant to deliver CHM to the outer retina following intravitreal delivery. Lastly, a non-viral-mediated CHM replacement strategy is currently under development, which could lead to a future clinical trial. Here, we summarise the rationale behind these various studies, as well as any results published to date. The diversity of these trials currently places choroideremia at the forefront of the retinal gene therapy field. As a consequence, the trial outcomes, regardless of the results, have the potential to change the landscape of gene supplementation for inherited retinal diseases.
Assuntos
Coroideremia , Coroideremia/diagnóstico , Coroideremia/genética , Coroideremia/terapia , Dependovirus/genética , Humanos , Retina , Epitélio Pigmentado da RetinaRESUMO
Retinitis pigmentosa (RP) is an inherited retinal dystrophy that causes progressive vision loss. The G56R mutation in NR2E3 is the second most common mutation causing autosomal dominant (ad) RP, a transcription factor that is essential for photoreceptor development and maintenance. The G56R variant is exclusively responsible for all cases of NR2E3-associated adRP. Currently, there is no treatment for NR2E3-related or, other, adRP, but genome editing holds promise. A pertinent approach would be to specifically knockout the dominant mutant allele, so that the wild type allele can perform unhindered. In this study, we developed a CRISPR/Cas strategy to specifically knockout the mutant G56R allele of NR2E3 and performed a proof-of-concept study in induced pluripotent stem cells (iPSCs) of an adRP patient. We demonstrate allele-specific knockout of the mutant G56R allele in the absence of off-target events. Furthermore, we validated this knockout strategy in an exogenous overexpression system. Accordingly, the mutant G56R-CRISPR protein was truncated and mis-localized to the cytosol in contrast to the (peri)nuclear localizations of wild type or G56R NR2E3 proteins. Finally, we show, for the first time, that G56R iPSCs, as well as G56R-CRISPR iPSCs, can differentiate into NR2E3-expressing retinal organoids. Overall, we demonstrate that G56R allele-specific knockout by CRISPR/Cas could be a clinically relevant approach to treat NR2E3-associated adRP.
Assuntos
Repetições Palindrômicas Curtas Agrupadas e Regularmente Espaçadas/genética , Genes Dominantes/genética , Mutação/genética , Retinose Pigmentar/genética , Alelos , Animais , Sequência de Bases , Células COS , Linhagem Celular , Chlorocebus aethiops , Edição de Genes/métodos , Células HEK293 , Humanos , Células-Tronco Pluripotentes Induzidas/fisiologia , Receptores Nucleares Órfãos/genética , Retina/fisiologiaRESUMO
Human-induced pluripotent stem cell (hiPSC)-derived retinal pigment epithelium (RPE) is a powerful tool for pathophysiological studies and preclinical therapeutic screening, as well as a source for clinical cell transplantation. Thus, it must be validated for maturity and functionality to ensure correct data readouts and clinical safety. Previous studies have validated hiPSC-derived RPE as morphologically characteristic of the tissue in the human eye. However, information concerning the expression and functionality of ion channels is still limited. We screened hiPSC-derived RPE for the polarized expression of a panel of L-type (CaV 1.1, CaV 1.3) and T-type (CaV 3.1, CaV 3.3) Ca2+ channels, K+ channels (Maxi-K, Kir4.1, Kir7.1), and the Cl- channel ClC-2 known to be expressed in native RPE. We also tested the roles of these channels in key RPE functions using specific inhibitors. In addition to confirming the native expression profiles and function of certain channels, such as L-type Ca2+ channels, we show for the first time that T-type Ca2+ channels play a role in both phagocytosis and vascular endothelial growth factor (VEGF) secretion. Moreover, we demonstrate that Maxi-K and Kir7.1 channels are involved in the polarized secretion of VEGF and pigment epithelium-derived factor (PEDF). Furthermore, we show a novel localization for ClC-2 channel on the apical side of hiPSC-derived RPE, with an overexpression at the level of fluid-filled domes, and demonstrate that it plays an important role in phagocytosis, as well as VEGF and PEDF secretion. Taken together, hiPSC-derived RPE is a powerful model for advancing fundamental knowledge of RPE functions.
Assuntos
Canais de Cálcio Tipo T/metabolismo , Canais de Cloreto/metabolismo , Células-Tronco Pluripotentes Induzidas/fisiologia , Canais de Potássio/metabolismo , Epitélio Pigmentado da Retina/fisiologia , Canais de Cálcio Tipo T/genética , Diferenciação Celular , Canais de Cloreto/genética , Regulação da Expressão Gênica , Humanos , Canais de Potássio/genéticaRESUMO
Purpose: To identify relevant criteria for gene therapy based on clinical and genetic characteristics of rod-cone dystrophy associated with RLBP1 pathogenic variants in a large cohort comprising children and adults. Design: Retrospective cohort study. Participants: Patients with pathogenic variants in RLBP1 registered in a single French reference center specialized in inherited retinal dystrophies. Methods: Clinical, multimodal imaging, and genetic findings were reviewed. Main Outcome Measures: Age of onset; visual acuity; ellipsoid line length; nasal, temporal, and foveal retinal thickness; and pathogenic variants and related phenotypes, including Newfoundland rod-cone and Bothnia dystrophies (NFRCDs), were reappraised. Results: Twenty-one patients (15 families) were included. The most frequent form was NFRCD with 12 patients (8 families) homozygous for the recurrent deletion of exons 7 through 9 in RLBP1 and 5 patients (4 families) with biallelic protein-truncating variants (2 novel: p.Gln16∗ and p.Tyr251∗). A novel combination of the p.Arg234Trp Bothnia variant with a nonsense variant in trans led to Bothnia dystrophy in 2 sisters. One proband carrying the p.Met266Lys Bothnia variant and in trans p.Arg121Trp and a second, with the p.Arg9Cys and p.Tyr111∗ combination, both demonstrated mild retinitis punctata albescens. Independently of genotype, all patients showed a visual acuity of worse than 20/200, an ellipsoid line width of less than 1000 µm, and a mean foveal thickness of less than 130 to 150 µm, with loss of both the interdigitation and ellipsoid lines. Conclusions: The eligibility for RLBP1 gene therapy first should be determined according to the biallelic variant combination using a robust classification as proposed herein. An ellipsoid line width of more than 1200 µm and a central thickness of more than 130 to 150 µm with detectable ellipsoid and interdigitation lines should be 2 prerequisite imaging indicators for gene therapy.
RESUMO
Environmental light has deleterious effects on the outer retina in human retinopathies, such as ABCA4-related Stargardt's disease and dry age-related macular degeneration. These effects involve carbonyl and oxidative stress, which contribute to retinal cell death and vision loss. Here, we used an albino Abca4-/- mouse model, the outer retina of which shows susceptibility to acute photodamage, to test the protective efficacy of a new polyunsaturated fatty acid lipophenol derivative. Anatomical and functional analyses demonstrated that a single intravenous injection of isopropyl-phloroglucinol-DHA, termed IP-DHA, dose-dependently decreased light-induced photoreceptor degeneration and preserved visual sensitivity. This protective effect persisted for 3 months. IP-DHA did not affect the kinetics of the visual cycle in vivo or the activity of the RPE65 isomerase in vitro. Moreover, IP-DHA administered by oral gavage showed significant protection of photoreceptors against acute light damage. In conclusion, short-term tests in Abca4-deficient mice, following single-dose administration and light exposure, identify IP-DHA as a therapeutic agent for the prevention of retinal degeneration.