Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
2.
Sci Rep ; 11(1): 17491, 2021 09 01.
Artigo em Inglês | MEDLINE | ID: mdl-34471168

RESUMO

The root-lesion nematode, Pratylenchus thornei, is one of the major plant-parasitic nematode species causing significant yield losses in chickpea (Cicer arietinum). In order to identify the underlying mechanisms of resistance to P. thornei, the transcriptomes of control and inoculated roots of three chickpea genotypes viz. D05253 > F3TMWR2AB001 (resistant advanced breeding line), PBA HatTrick (moderately resistant cultivar), and Kyabra (susceptible cultivar) were studied at 20 and 50 days post inoculation using the RNA-seq approach. On analyzing the 633.3 million reads generated, 962 differentially expressed genes (DEGs) were identified. Comparative analysis revealed that the majority of DEGs upregulated in the resistant genotype were downregulated in the moderately resistant and susceptible genotypes. Transcription factor families WRKY and bZIP were uniquely expressed in the resistant genotype. The genes Cysteine-rich receptor-like protein kinase 10, Protein lifeguard-like, Protein detoxification, Bidirectional sugar transporter Sugars Will Eventually be Exported Transporters1 (SWEET1), and Subtilisin-like protease were found to play cross-functional roles in the resistant chickpea genotype against P. thornei. The identified candidate genes for resistance to P. thornei in chickpea can be explored further to develop markers and accelerate the introgression of P. thornei resistance into elite chickpea cultivars.


Assuntos
Cicer/genética , Resistência à Doença/genética , Regulação da Expressão Gênica de Plantas , Doenças das Plantas/genética , Proteínas de Plantas/metabolismo , Transcriptoma , Tylenchoidea/fisiologia , Animais , Cicer/imunologia , Cicer/parasitologia , Resistência à Doença/imunologia , Interações Hospedeiro-Parasita , Doenças das Plantas/parasitologia , Proteínas de Plantas/genética , Raízes de Plantas/genética , Raízes de Plantas/imunologia , Raízes de Plantas/parasitologia
3.
Front Plant Sci ; 12: 688694, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34326857

RESUMO

Globally terminal drought is one of the major constraints to chickpea (Cicer arietinum L.) production. Early flowering genotypes escape terminal drought, and the increase in seed size compensates for yield losses arising from terminal drought. A MutMap population for early flowering and large seed size was developed by crossing the mutant line ICC4958-M3-2828 with wild-type ICC 4958. Based on the phenotyping of MutMap population, extreme bulks for days to flowering and 100-seed weight were sequenced using Hi-Seq2500 at 10X coverage. On aligning 47.41 million filtered reads to the CDC Frontier reference genome, 31.41 million reads were mapped and 332,395 single nucleotide polymorphisms (SNPs) were called. A reference genome assembly for ICC 4958 was developed replacing these SNPs in particular positions of the CDC Frontier genome. SNPs specific for each mutant bulk ranged from 3,993 to 5,771. We report a single unique genomic region on Ca6 (between 9.76 and 12.96 Mb) harboring 31, 22, 17, and 32 SNPs with a peak of SNP index = 1 for low bulk for flowering time, high bulk for flowering time, high bulk for 100-seed weight, and low bulk for 100-seed weight, respectively. Among these, 22 SNPs are present in 20 candidate genes and had a moderate allelic impact on the genes. Two markers, Ca6EF10509893 for early flowering and Ca6HSDW10099486 for 100-seed weight, were developed and validated using the candidate SNPs. Thus, the associated genes, candidate SNPs, and markers developed in this study are useful for breeding chickpea varieties that mitigate yield losses under drought stress.

4.
Front Plant Sci ; 12: 636973, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34122467

RESUMO

Chickpea-the second most important grain legume worldwide-is cultivated mainly on marginal soils. Phosphorus (P) deficiency often restricts chickpea yields. Understanding the genetics of traits encoding P-acquisition efficiency and P-use efficiency will help develop strategies to reduce P-fertilizer application. A genome-wide association mapping approach was used to determine loci and genes associated with root architecture, root traits associated with P-acquisition efficiency and P-use efficiency, and any associated proxy traits. Using three statistical models-a generalized linear model (GLM), a mixed linear model (MLM), and a fixed and random model circulating probability unification (FarmCPU) -10, 51, and 40 marker-trait associations (MTAs), respectively were identified. A single nucleotide polymorphism (SNP) locus (Ca1_12310101) on Ca1 associated with three traits, i.e., physiological P-use efficiency, shoot dry weight, and shoot P content was identified. Genes related to shoot P concentration (NAD kinase 2, dynamin-related protein 1C), physiological P-use efficiency (fasciclin-like arabinogalactan protein), specific root length (4-coumarate-CoA ligase 1) and manganese concentration in mature leaves (ABC1 family protein) were identified. The MTAs and novel genes identified in this study can be used to improve P-use efficiency in chickpea.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA