Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Brain Behav Immun ; 90: 3-15, 2020 11.
Artigo em Inglês | MEDLINE | ID: mdl-32726683

RESUMO

Infections in childhood play an essential role in the pathogenesis of cognitive and psycho-emotional disorders. One of the possible mechanisms of these impairments is changes in the functional properties of NMDA and AMPA glutamate receptors in the brain. We suggest that bacterial infections during the early life period, which is critical for excitatory synapse maturation, can affect the subunit composition of NMDA and AMPA receptors. In the present study, we investigated the effect of repetitive lipopolysaccharide (LPS) intraperitoneal (i.p.) administration (25 µg/kg/day on P14, 16, and 18), mimicking an infectious disease, on the expression of subunits of NMDA and AMPA receptors in young rats. We revealed a substantial decrease of GluN2B subunit expression in the hippocampus at P23 using Western blot analysis and real-time polymerase chain reaction assay. Moderate changes were also found in GluN1, GluN2A, and GluA1 mRNA expression. The LPS-treated rats exhibited decreased exploratory and locomotor activity in the open field test and the impairment of spatial learning in the Morris water maze. Behavioral impairments were accompanied by a significant reduction in long-term hippocampal synaptic potentiation. Our data indicate that LPS-treatment in the critical period for excitatory synapse maturation alters ionotropic glutamate receptor gene expression, disturbs synaptic plasticity, and alters behavior.


Assuntos
Potenciação de Longa Duração , Receptores Ionotrópicos de Glutamato , Animais , Cognição , Hipocampo/metabolismo , Ratos , Receptores de AMPA/genética , Receptores de AMPA/metabolismo , Receptores de N-Metil-D-Aspartato/genética , Receptores de N-Metil-D-Aspartato/metabolismo
2.
Behav Brain Res ; 372: 112044, 2019 10 17.
Artigo em Inglês | MEDLINE | ID: mdl-31220488

RESUMO

The aim of this study was to evaluate in detail behavioral patterns and comorbid disturbances in rats using the lithium-pilocarpine model. A comprehensive set of behavioral tests was used to investigate behavioral patterns, including the open field test, Morris water maze, Y-maze, fear conditioning, the elevated plus maze, the forced swimming test, and the resident-intruder paradigm. Motor and explorative activity, learning and memory, anxiety and depressive-like behavior, aggression, and communication were evaluated 8-15 d after pilocarpine-induced status epilepticus (SE) (latent phase of the model) and 41-53 d (chronic phase) after pilocarpine-induced SE. Increased motor activity and impaired memory function were the most noticeable behavioral modifications in the epileptic rats. Both the movement speed and distance traveled increased in the open field test in both the latent and chronic phases. Significant impairments were detected in short-and long-term spatial memory in the Morris water maze during the latent phase. Besides the alterations in spatial memory, behaviors indicative of short- and long-term fear-associated memory disturbances were observed in the fear conditioning test during the chronic phase of the model. In the resident-intruder paradigm, epileptic rats exhibited disturbed communicative behavior, with impaired social behaviors. In contrast, emotional disturbances were less prominent, with the rats exhibiting decreased anxiety. There were no changes in depressive-like behavior. The data suggest that the lithium-pilocarpine model of TLE in rodents is more useful for studies of comorbid disturbances in memory, hyperactivity, and social behavior than for research on psychoemotional impairments, such as anxiety and depression.


Assuntos
Cognição/fisiologia , Emoções/fisiologia , Epilepsia do Lobo Temporal/fisiopatologia , Animais , Ansiedade/induzido quimicamente , Comportamento Animal/efeitos dos fármacos , Cognição/efeitos dos fármacos , Emoções/efeitos dos fármacos , Epilepsia/fisiopatologia , Comportamento Exploratório/efeitos dos fármacos , Medo/efeitos dos fármacos , Lítio/farmacologia , Masculino , Transtornos da Memória/induzido quimicamente , Atividade Motora/efeitos dos fármacos , Atividade Motora/fisiologia , Pilocarpina/farmacologia , Ratos , Ratos Wistar , Comportamento Social , Memória Espacial/efeitos dos fármacos , Estado Epiléptico/fisiopatologia
3.
Cell Mol Neurobiol ; 39(2): 287-300, 2019 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-30607810

RESUMO

The mechanisms of impairment in long-term potentiation after status epilepticus (SE) remain unclear. We investigated the properties of LTP induced by theta-burst stimulation in hippocampal slices of rats 3 h and 1, 3, and 7 days after SE. Seizures were induced in 3-week old rats by a single injection of pentylenetetrazole (PTZ). Only animals with generalized seizures lasting more than 30 min were included in the experiments. The results revealed that LTP was strongly attenuated in the CA1 hippocampal area after PTZ-induced SE as compared with that in control animals. Saturation of synaptic responses following epileptic activity does not explain weakening of LTP because neither the quantal size of the excitatory responses nor the slopes of the input-output curves for field excitatory postsynaptic potentials changed in the post-SE rats. After PTZ-induced SE, NMDA-dependent LTP was suppressed, and LTP transiently switched to the mGluR1-dependent form. This finding does not appear to have been reported previously in the literature. An antagonist of NMDA receptors, D-2-amino-5-phosphonovalerate, did not block LTP induction in 3-h and 1-day post-SE slices. An antagonist of mGluR1, FTIDS, completely prevented LTP in 1-day post-SE slices; whereas it did not affect LTP induction in control and post-SE slices at the other studied times. mGluR1-dependent LTP was postsynaptically expressed and did not require NMDA receptor activation. Recovery of NMDA-dependent LTP occurred 7 day after SE. Transient switching between NMDA-dependent LTP and mGluR1-dependent LTP could play a role in the pathogenesis of acquired epilepsy.


Assuntos
Região CA1 Hipocampal/fisiopatologia , Região CA3 Hipocampal/fisiopatologia , Potenciação de Longa Duração , N-Metilaspartato/metabolismo , Receptores de Glutamato Metabotrópico/metabolismo , Convulsões/metabolismo , Convulsões/fisiopatologia , Sinapses/metabolismo , Animais , Potenciais Pós-Sinápticos Excitadores , Aprendizagem em Labirinto , Pentilenotetrazol , Ratos Wistar , Receptores de AMPA/metabolismo , Receptores de N-Metil-D-Aspartato/metabolismo , Convulsões/induzido quimicamente , Memória Espacial
4.
Neurosci Lett ; 686: 94-100, 2018 11 01.
Artigo em Inglês | MEDLINE | ID: mdl-30189229

RESUMO

Temporal lobe epilepsy is the most prevalent form of complex partial seizure, and it is frequently triggered by an initial brain-damaging insult. The prevention of epileptogenesis after a primary event could be a key innovative approach to epilepsy treatment. Therefore, it is critical to understand the pathogenic mechanisms of this process in detail. Multiple mechanisms are involved in epileptogenesis, including alterations in the expression of synaptic receptors and transporters. The present study aimed to investigate the mRNA expression of excitatory amino acid transporters 1-3 (EAATs) and the subunits of the NMDA (GluN1, GluN2a, and GluN2b) and AMPA (GluA1 and GluA2) glutamate receptors following status epilepticus in a rat lithium-pilocarpine model. The analysis of the mRNA was performed via qRT-PCR one week after pilocarpine injections (the period of epileptogenesis) into the ventral and dorsal hippocampus and the entorhinal, temporal, and medial prefrontal cortexes - brain areas that are differentially involved in the pathogenesis of TLE. We found that increased EAAT2 mRNA levels in the medial prefrontal cortex and dorsal hippocampus may represent compensatory neuroprotective changes. Alterations in the gene expression levels of AMPA receptor subunits were found in the ventral hippocampus and temporal cortex. The reduced expression of the GluN2a subunit was observed in the temporal and entorhinal cortical areas and the ventral hippocampus, which may result in the predominance of GluN2b-containing NMDA receptors in these areas. The receptors with this altered subunit composition may be involved in pathophysiological mechanisms related to epileptogenesis. These data provide a better understanding of the pathogenesis of epilepsy.


Assuntos
RNA Mensageiro/metabolismo , Receptores de Glutamato/metabolismo , Receptores de N-Metil-D-Aspartato/metabolismo , Convulsões/metabolismo , Animais , Modelos Animais de Doenças , Hipocampo/efeitos dos fármacos , Hipocampo/metabolismo , Masculino , Pilocarpina/farmacologia , Ratos Wistar , Receptores de AMPA/efeitos dos fármacos , Receptores de AMPA/metabolismo , Receptores de Glutamato/efeitos dos fármacos , Receptores de N-Metil-D-Aspartato/efeitos dos fármacos , Convulsões/induzido quimicamente
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA