Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Free Radic Biol Med ; 99: 139-152, 2016 10.
Artigo em Inglês | MEDLINE | ID: mdl-27458122

RESUMO

Catalase-3 (CAT-3) constitutes the main catalase activity in growing hyphae of Neurospora crassa, and its activity increases during exponential growth or is induced under different stress conditions. Although extensive progress has been made to identify catalase regulators, the regulation mechanism of CAT-3 at the chromatin level still remains unclear. Here, we aim at investigating the molecular regulation mechanisms of cat-3 at the chromatin level. We found that CAT-3 protein levels increased in mutants defective in proper global heterochromatin formation. Bioinformatics analysis identified a 5-kb AT-rich sequence adjacent to the cat-3 promoter as a heterochromatin region because of its enrichment of H3K9me3 and HP1. Expression of CAT-3 was induced by H2O2 treatment in wild-type and such change occurred along with the accumulation of histone H3 acetylation at 5-kb heterochromatin boundaries and cat-3 locus, but without alteration of its H3K9me3 repressive modification. Moreover, disruption of 5-kb heterochromatin region results in elevated cat-3 expression, and higher levels of cat-3 expression were promoted by the combination with global heterochromatin defective mutants. Interestingly, the molecular weight and activity bands of CAT-3 protein are different in heterochromatin defective mutants compared with those in wild-type, suggesting that its N-terminal processing and modification may be altered. Our study indicates that the local chromatin structure creates a heterochromatin repressive environment to repress nearby gene expression.


Assuntos
Catalase/genética , Proteínas Fúngicas/genética , Regulação Fúngica da Expressão Gênica , Heterocromatina/química , Neurospora crassa/genética , Processamento de Proteína Pós-Traducional , Catalase/metabolismo , Montagem e Desmontagem da Cromatina/efeitos dos fármacos , Homólogo 5 da Proteína Cromobox , Proteínas Cromossômicas não Histona/genética , Proteínas Cromossômicas não Histona/metabolismo , Proteínas Fúngicas/metabolismo , Heterocromatina/metabolismo , Histonas/genética , Histonas/metabolismo , Peróxido de Hidrogênio/farmacologia , Hifas/efeitos dos fármacos , Hifas/genética , Hifas/metabolismo , Mutação , Neurospora crassa/efeitos dos fármacos , Neurospora crassa/metabolismo , Oxirredução , Estresse Oxidativo , Regiões Promotoras Genéticas , Ligação Proteica
2.
J Biol Chem ; 291(21): 11055-63, 2016 May 20.
Artigo em Inglês | MEDLINE | ID: mdl-27002152

RESUMO

The circadian system in Neurospora is based on the transcriptional/translational feedback loops and rhythmic frequency (frq) transcription requires the WHITE COLLAR (WC) complex. Our previous paper has shown that frq could be transcribed in a WC-independent pathway in a strain lacking the histone H3K36 methyltransferase, SET-2 (su(var)3-9-enhancer-of-zeste-trithorax-2) (1), but the mechanism was unclear. Here we disclose that loss of histone H3K36 methylation, due to either deletion of SET-2 or H3K36R mutation, results in arrhythmic frq transcription and loss of overt rhythmicity. Histone acetylation at frq locus increases in set-2(KO) mutant. Consistent with these results, loss of H3K36 methylation readers, histone deacetylase RPD-3 (reduced potassium dependence 3) or EAF-3 (essential SAS-related acetyltransferase-associated factor 3), also leads to hyperacetylation of histone at frq locus and WC-independent frq expression, suggesting that proper chromatin modification at frq locus is required for circadian clock operation. Furthermore, a mutant strain with three amino acid substitutions (histone H3 lysine 9, 14, and 18 to glutamine) was generated to mimic the strain with hyperacetylation state of histone H3. H3K9QK14QK18Q mutant exhibits the same defective clock phenotype as rpd-3(KO) mutant. Our results support a scenario in which H3K36 methylation is required to establish a permissive chromatin state for circadian frq transcription by maintaining proper acetylation status at frq locus.


Assuntos
Relógios Circadianos/genética , Proteínas de Ligação a DNA/genética , Proteínas de Ligação a DNA/metabolismo , Proteínas Fúngicas/genética , Proteínas Fúngicas/metabolismo , Histona-Lisina N-Metiltransferase/genética , Histona-Lisina N-Metiltransferase/metabolismo , Neurospora crassa/genética , Neurospora crassa/metabolismo , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo , Regulação Fúngica da Expressão Gênica , Técnicas de Inativação de Genes , Genes Fúngicos , Histona Desacetilases/genética , Histona Desacetilases/metabolismo , Histona-Lisina N-Metiltransferase/deficiência , Mutagênese Sítio-Dirigida , Proteínas Mutantes/genética , Proteínas Mutantes/metabolismo , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA