Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Am J Physiol Renal Physiol ; 323(2): F156-F170, 2022 08 01.
Artigo em Inglês | MEDLINE | ID: mdl-35695380

RESUMO

The lysosomal storage disease cystinosis is caused by mutations in CTNS, encoding the cystine transporter cystinosin, and in its severest form leads to proximal tubule dysfunction followed by kidney failure. Patients receive the drug-based therapy cysteamine from diagnosis. However, despite long-term treatment, cysteamine only slows the progression of end-stage renal disease. Preclinical testing in cystinotic rodents is required to evaluate new therapies; however, the current models are suboptimal. To solve this problem, we generated a new cystinotic rat model using CRISPR/Cas9-mediated gene editing to disrupt exon 3 of Ctns and measured various parameters over a 12-mo time course. Ctns-/- rats display hallmarks of cystinosis by 3-6 mo of age, as demonstrated by a failure to thrive, excessive thirst and urination, cystine accumulation in tissues, corneal cystine crystals, loss of LDL receptor-related protein 2 in proximal tubules, and immune cell infiltration. High levels of glucose, calcium, albumin, and protein were excreted at 6 mo of age, consistent with the onset of Fanconi syndrome, with a progressive diminution of urine urea and creatinine from 9 mo of age, indicative of chronic kidney disease. Kidney histology and immunohistochemistry showed proximal tubule atrophy and glomerular damage as well as classic "swan neck" lesions. Overall, Ctns-/- rats show a disease progression that more faithfully recapitulates nephropathic cystinosis than existing rodent models. The Ctns-/- rat provides an excellent new rodent model of nephropathic cystinosis that is ideally suited for conducting preclinical drug testing and is a powerful tool to advance cystinosis research.NEW & NOTEWORTHY Animal models of disease are essential to perform preclinical testing of new therapies before they can progress to clinical trials. The cystinosis field has been hampered by a lack of suitable animal models that fully recapitulate the disease. Here, we generated a rat model of cystinosis that closely models the human condition in a timeframe that makes them an excellent model for preclinical drug testing as well as being a powerful tool to advance research.


Assuntos
Sistemas de Transporte de Aminoácidos Neutros , Cistinose , Síndrome de Fanconi , Sistemas de Transporte de Aminoácidos Neutros/genética , Sistemas de Transporte de Aminoácidos Neutros/metabolismo , Animais , Cisteamina/farmacologia , Cisteamina/uso terapêutico , Cistina/genética , Cistina/metabolismo , Cistina/uso terapêutico , Cistinose/tratamento farmacológico , Cistinose/genética , Cistinose/metabolismo , Síndrome de Fanconi/genética , Fenótipo , Ratos
2.
Histochem Cell Biol ; 152(4): 293-310, 2019 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-31396687

RESUMO

The cystine-glutamate exchanger (system xc-) is responsible for the exchange of extracellular cystine for intracellular glutamate. In this study, we mapped the expression of xCT, the light chain subunit of system xc- in the different tissues of 3-6-week-old mouse (C57BL/6J) eye and have used an xCT knockout mouse to verify labelling specificity. Moreover, using the xCT knockout mouse, we investigated whether xCT was involved in maintaining extracellular redox balance in the eye. xCT transcript and protein were present in the cornea, lens and retina of wild-type mice, but not knockout mice. xCT was localised to the corneal epithelium, and the lens epithelium and cortical fibre cells but was absent in the iris. xCT localisation could not be determined in the ciliary body or retina, since xCT labelling was also detected in the knockout indicating a lack of specificity of the xCT antibody in tissues of a neural origin. Intracellular cysteine and cystine concentrations were similar in the wild-type and xCT knockout mouse for the cornea, lens, and retina. While extracellular cysteine levels were similar between the plasma, aqueous humour, and vitreous humour of the wild-type and xCT knockout mouse, extracellular cystine levels in the plasma and aqueous were significantly elevated in the xCT knockout mouse relative to the wild type. This suggests that loss of xCT results in an increased oxidative environment, particularly within the anterior chamber of the eye in which the aqueous humour resides. How this oxidative shift impacts ocular tissues that interface with the aqueous humour over time will be the focus of future work.


Assuntos
Sistema y+ de Transporte de Aminoácidos/análise , Sistema y+ de Transporte de Aminoácidos/metabolismo , Olho/química , Olho/metabolismo , Sistema y+ de Transporte de Aminoácidos/deficiência , Animais , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Oxirredução
3.
Biol Reprod ; 95(1): 16, 2016 07.
Artigo em Inglês | MEDLINE | ID: mdl-27281704

RESUMO

Reprogramming by nuclear transfer (NT) cloning forces cells to lose their lineage-specific epigenetic marks and reacquire totipotency. This process often produces molecular anomalies that compromise clone development. We hypothesized that quiescence alters the epigenetic status of somatic NT donor cells and elevates their reprogrammability. To test this idea, we compared chromatin composition and cloning efficiency of serum-starved quiescent (G0) fibroblasts versus nonstarved mitotically selected (G1) controls. We show that G0 chromatin contains reduced levels of Polycomb group proteins EED, SUZ12, PHC1, and RING2, as well as histone variant H2A.Z. Using quantitative confocal immunofluorescence microscopy and fluorometric enzyme-linked immunosorbent assay, we further show that G0 induced DNA and histone hypomethylation, specifically at H3K4me3, H3K9me2/3 and H3K27me3, but not H3K9me1. Collectively, these changes resulted in a more relaxed G0 chromatin state. Following NT, G0 donors developed into blastocysts that retained H3K9me3 hypomethylation, both in the inner cell mass and trophectoderm. G0 blastocysts from different cell types and cell lines developed significantly better into adult offspring. In conclusion, serum starvation induced epigenetic changes, specifically hypotrimethylation, that provide a mechanistic correlate for increased somatic cell reprogrammability.


Assuntos
Proteínas de Ciclo Celular/metabolismo , Ciclo Celular/fisiologia , Reprogramação Celular/fisiologia , Epigênese Genética , Fibroblastos/citologia , Mitose/fisiologia , Animais , Bovinos , Proteínas de Ciclo Celular/genética , Fibroblastos/metabolismo , Histonas/metabolismo , Técnicas de Transferência Nuclear
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA