Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Transfusion ; 59(12): 3560-3569, 2019 12.
Artigo em Inglês | MEDLINE | ID: mdl-31769050

RESUMO

BACKGROUND: Umbilical cord blood (UCB) is a source of hematopoietic stem cells for transplantation, offering an alternative for patients unable to find a matched adult donor. UCB is also a versatile source of hematopoietic stem and progenitor cells (hCD34 + HSPCs) for research into hematologic diseases, in vitro expansion, ex vivo gene therapy, and adoptive immunotherapy. For these studies, there is a need to isolate hCD34 + HSPCs from cryopreserved units, and protocols developed for isolation from fresh cord blood are unsuitable. STUDY DESIGN: This study describes a modified method for isolating hCD34 + HSPCs from cryopreserved UCB. It uses the Plasmatherm system for thawing, followed by CD34 microbead magnetic-activated cell sorting isolation with a cell separation kit (Whole Blood Columns, Miltenyi Biotec). hCD34 + HSPC phenotypes and functionality were assessed in vitro and hematologic reconstitution determined in vivo in immunodeficient mice. RESULTS: Total nucleated cell recovery after thawing and washing was 44.7 ± 11.7%. Recovery of hCD34 + HSPCs after application of thawed cells to Whole Blood Columns was 77.5 ± 22.6%. When assessed in two independent laboratories, the hCD34+ cell purities were 71.7 ± 10.7% and 87.8 ± 2.4%. Transplantation of the enriched hCD34 + HSPCs into NSG mice revealed the presence of repopulating hematopoietic stem cells (estimated frequency of 0.07%) and multilineage engraftment. CONCLUSION: This provides a simplified protocol for isolating high-purity human CD34 + HSPCs from banked UCB adaptable to current Good Manufacturing Practice. This protocol reduces the number of steps and associated risks and thus total production costs. Importantly, the isolated CD34 + HSPCs possess in vivo repopulating activity in immunodeficient mice, making them a suitable starting population for ex vivo culture and gene editing.


Assuntos
Antígenos CD34/metabolismo , Sangue Fetal/citologia , Células-Tronco Hematopoéticas/citologia , Células-Tronco/citologia , Animais , Criopreservação , Edição de Genes , Terapia Genética , Células-Tronco Hematopoéticas/metabolismo , Humanos , Imunoterapia , Camundongos , Células-Tronco/metabolismo
2.
Biotechnol Prog ; 19(1): 121-9, 2003.
Artigo em Inglês | MEDLINE | ID: mdl-12573014

RESUMO

To increase transient expression of recombinant proteins in Chinese hamster ovary cells, we have engineered their protein synthetic capacity by directed manipulation of mRNA translation initiation. To control this process we constructed a nonphosphorylatable Ser(51)Ala site-directed mutant of eIF2alpha, a subunit of the trimeric eIF2 complex that is implicated in regulation of the global rate of mRNA translation initiation in eukaryotic cells. Phosphorylation of eIF2alpha by protein kinases inhibits eIF2 activity and is known to increase as cells perceive a range of stress conditions. Using single- and dual-gene plasmids introduced into CHO cells by electroporation, we found that transient expression of the eIF2alpha Ser(51)Ala mutant with firefly luciferase resulted in a 3-fold increase in reporter activity, relative to cells transfected with reporter only. This effect was maintained in transfected cells for at least 48 h after transfection. Expression of the wild-type eIF2alpha protein had no such effect. Elevated luciferase activity was associated with a reduction in the level of eIF2alpha phosphorylation in cells transfected with the mutant eIF2alpha construct. Transfection of CHO cells with the luciferase-only construct resulted in a marked decrease in the global rate of protein synthesis in the whole cell population 6 h post-transfection. However, expression of the mutant Ser(51)Ala or wild-type eIF2alpha proteins restored the rate of protein synthesis in transfected cells to a level equivalent to or exceeding that of control cells. Associated with this, entry of plasmid DNA into cells during electroporation was visualized by confocal microscopy using a rhodamine-labeled plasmid construct expressing green fluorescent protein. Six hours after transfection, plasmid DNA was present in all cells, albeit to a variable extent. These data suggest that entry of naked DNA into the cell itself functions to inhibit protein synthesis by signaling mechanisms affecting control of mRNA translation by eIF2. This work therefore forms the basis of a rational strategy to generically up-regulate transient expression of recombinant proteins by simultaneous host cell engineering.


Assuntos
Células CHO/metabolismo , Regulação da Expressão Gênica/genética , Engenharia de Proteínas/métodos , RNA Mensageiro/genética , Proteínas Recombinantes/biossíntese , Transfecção/métodos , Animais , Células CHO/fisiologia , Cricetinae , Eletroporação/métodos , Fator de Iniciação 2 em Eucariotos/biossíntese , Fator de Iniciação 2 em Eucariotos/genética , Fator de Iniciação 2 em Eucariotos/metabolismo , Luciferases/biossíntese , Luciferases/genética , Mutagênese Sítio-Dirigida/genética , Plasmídeos/administração & dosagem , Biossíntese de Proteínas/genética , Proteínas Recombinantes/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA