Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Sci Rep ; 14(1): 17967, 2024 08 02.
Artigo em Inglês | MEDLINE | ID: mdl-39095540

RESUMO

Current diagnostic methods for canine urothelial carcinoma (UC) are technically challenging or can lack specificity, hence there is a need for novel biomarkers of UC. To this end, we analysed the microRNA (miRNA) cargo of extracellular vesicles (EVs) from urine samples of dogs with UC to identify candidate miRNA biomarkers. Urine was fractionated using ultrafiltration combined with size-exclusion chromatography and small RNA sequencing analysis was performed on both the EV enriched and (EV free) protein fractions. A greater number of candidate miRNA biomarkers were detected in the EV fraction than the protein fraction, and further validation using droplet digital PCR (ddPCR) was performed on the EV enriched fraction of a second cohort of dogs with UC which indicated that miR-182, miR-221 and miR-222 were significantly overrepresented in dogs with UC when compared with healthy dogs and dogs with urinary tract infections. Pathway analysis confirmed that these three miRNAs are involved in cancer. In addition, their potential downstream gene targets were predicted and PIK3R1, a well-known oncogene is likely to be a shared target between miRNA-182 and miRNA-221/222. In summary, this study highlights the potential of urinary EV-associated miRNAs as a source of biomarkers for the diagnosis of canine UC.


Assuntos
Biomarcadores Tumorais , Doenças do Cão , Vesículas Extracelulares , MicroRNAs , Animais , Cães , MicroRNAs/urina , MicroRNAs/genética , Vesículas Extracelulares/genética , Vesículas Extracelulares/metabolismo , Biomarcadores Tumorais/urina , Biomarcadores Tumorais/genética , Doenças do Cão/urina , Doenças do Cão/genética , Doenças do Cão/diagnóstico , Neoplasias da Bexiga Urinária/urina , Neoplasias da Bexiga Urinária/genética , Neoplasias da Bexiga Urinária/veterinária , Neoplasias da Bexiga Urinária/diagnóstico , Regulação Neoplásica da Expressão Gênica , Masculino
2.
BMC Microbiol ; 24(1): 167, 2024 May 16.
Artigo em Inglês | MEDLINE | ID: mdl-38755524

RESUMO

BACKGROUND: The world faces a major infectious disease challenge. Interest in the discovery, design, or development of antimicrobial peptides (AMPs) as an alternative approach for the treatment of bacterial infections has increased. Insects are a good source of AMPs which are the main effector molecules of their innate immune system. Black Soldier Fly Larvae (BSFL) are being developed for large-scale rearing for food sustainability, waste reduction and as sustainable animal and fish feed. Bioinformatic studies have suggested that BSFL have the largest number of AMPs identified in insects. However, most AMPs identified in BSF have not yet undergone antimicrobial evaluation but are promising leads to treat critical infections. RESULTS: Jg7197.t1, Jg7902.t1 and Jg7904.t1 were expressed into the haemolymph of larvae following infection with Salmonella enterica serovar Typhimurium and were predicted to be AMPs using the computational tool ampir. The genes encoding these proteins were within 2 distinct clusters in chromosome 1 of the BSF genome. Following removal of signal peptides, predicted structures of the mature proteins were superimposed, highlighting a high degree of structural conservation. The 3 AMPs share primary sequences with proteins that contain a Kunitz-binding domain; characterised for inhibitory action against proteases, and antimicrobial activities. An in vitro antimicrobial screen indicated that heterologously expressed SUMO-Jg7197.t1 and SUMO-Jg7902.t1 did not show activity against 12 bacterial strains. While recombinant SUMO-Jg7904.t1 had antimicrobial activity against a range of Gram-negative and Gram-positive bacteria, including the serious pathogen Pseudomonas aeruginosa. CONCLUSIONS: We have cloned and purified putative AMPs from BSFL and performed initial in vitro experiments to evaluate their antimicrobial activity. In doing so, we have identified a putative novel defensin-like AMP, Jg7904.t1, encoded in a paralogous gene cluster, with antimicrobial activity against P. aeruginosa.


Assuntos
Antibacterianos , Defensinas , Dípteros , Larva , Animais , Defensinas/farmacologia , Defensinas/genética , Defensinas/química , Defensinas/isolamento & purificação , Antibacterianos/farmacologia , Antibacterianos/química , Dípteros/genética , Larva/efeitos dos fármacos , Larva/genética , Testes de Sensibilidade Microbiana , Sequência de Aminoácidos , Proteínas de Insetos/genética , Proteínas de Insetos/farmacologia , Proteínas de Insetos/química , Peptídeos Antimicrobianos/farmacologia , Peptídeos Antimicrobianos/genética , Peptídeos Antimicrobianos/química , Salmonella typhimurium/efeitos dos fármacos , Salmonella typhimurium/genética , Bactérias Gram-Negativas/efeitos dos fármacos
3.
Life Sci Alliance ; 7(4)2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38316462

RESUMO

Bidirectional interactions between the immune system and the gut microbiota are key contributors to various physiological functions. Immune-associated diseases such as cancer and autoimmunity, and efficacy of immunomodulatory therapies, have been linked to microbiome variation. Although COVID-19 infection has been shown to cause microbial dysbiosis, it remains understudied whether the inflammatory response associated with vaccination also impacts the microbiota. Here, we investigate the temporal impact of COVID-19 vaccination on the gut microbiome in healthy and immuno-compromised individuals; the latter included patients with primary immunodeficiency and cancer patients on immunomodulating therapies. We find that the gut microbiome remained remarkably stable post-vaccination irrespective of diverse immune status, vaccine response, and microbial composition spanned by the cohort. The stability is evident at all evaluated levels including diversity, phylum, species, and functional capacity. Our results indicate the resilience of the gut microbiome to host immune changes triggered by COVID-19 vaccination and suggest minimal, if any, impact on microbiome-mediated processes. These findings encourage vaccine acceptance, particularly when contrasted with the significant microbiome shifts observed during COVID-19 infection.


Assuntos
COVID-19 , Microbioma Gastrointestinal , Neoplasias , Humanos , Vacinas contra COVID-19 , COVID-19/prevenção & controle , Vacinação
4.
BMC Microbiol ; 24(1): 46, 2024 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-38302896

RESUMO

BACKGROUND: Campylobacter jejuni and Campylobacter coli are the major causative agents of bacterial gastroenteritis worldwide and are known obligate microaerophiles. Despite being sensitive to oxygen and its reduction products, both species are readily isolated from animal food products kept under atmospheric conditions where they face high oxygen tension levels. RESULTS: In this study, Transposon Directed Insertion-site Sequencing (TraDIS) was used to investigate the ability of one C. jejuni strain and two C. coli strains to overcome oxidative stress, using H2O2 to mimic oxidative stress. Genes were identified that were required for oxidative stress resistance for each individual strain but also allowed a comparison across the three strains. Mutations in the perR and ahpC genes were found to increase Campylobacter tolerance to H2O2. The roles of these proteins in oxidative stress were previously known in C. jejuni, but this data indicates that they most likely play a similar role in C. coli. Mutation of czcD decreased Campylobacter tolerance to H2O2. The role of CzcD, which functions as a zinc exporter, has not previously been linked to oxidative stress. The TraDIS data was confirmed using defined deletions of perR and czcD in C. coli 15-537360. CONCLUSIONS: This is the first study to investigate gene fitness in both C. jejuni and C. coli under oxidative stress conditions and highlights both similar roles for certain genes for both species and highlights other genes that have a role under oxidative stress.


Assuntos
Infecções por Campylobacter , Campylobacter coli , Campylobacter jejuni , Animais , Campylobacter jejuni/genética , Campylobacter jejuni/metabolismo , Campylobacter coli/genética , Campylobacter coli/metabolismo , Peróxido de Hidrogênio/farmacologia , Peróxido de Hidrogênio/metabolismo , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Estresse Oxidativo/genética , Oxigênio/metabolismo , Infecções por Campylobacter/microbiologia
5.
Endocrinology ; 165(3)2024 Jan 16.
Artigo em Inglês | MEDLINE | ID: mdl-38279940

RESUMO

The arcuate nucleus kisspeptin (ARNKISS) neurons represent the GnRH pulse generator that likely drives pulsatile gonadotropin secretion in all mammals. Using an improved GCaMP fiber photometry system enabling long-term continuous recordings, we aimed to establish a definitive profile of ARNKISS neuronal activity across the murine estrous cycle. As noted previously, a substantial reduction in the frequency of ARNKISS neuron synchronization events (SEs) occurs on late proestrus and extends into estrus. The SE amplitude remains constant throughout the cycle. During metestrus, we unexpectedly detected many multipeak SEs where many SEs occurred rapidly, within 160 seconds of each other. By applying a machine learning-based, k-means clustering analysis, we were further able to detect substantial within-stage variability in the patterns of pulse generator activity. Estrous cycle-dependent changes in SE activity occurred around the time of lights on and off. We also find that a mild stressor such as vaginal lavage reduces ARNKISS neuron SE frequency for up to 3 hours. These observations provide a comprehensive account of ARNKISS neuron activity across the estrous cycle, highlight a new pattern of multipeak SE activity, and introduce a new k-means clustering approach for analyzing ARNKISS neuron population behavior.


Assuntos
Hormônio Liberador de Gonadotropina , Hormônio Luteinizante , Animais , Feminino , Camundongos , Núcleo Arqueado do Hipotálamo/metabolismo , Ciclo Estral/fisiologia , Hormônio Liberador de Gonadotropina/metabolismo , Kisspeptinas/metabolismo , Neurônios/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA