RESUMO
Information on the geographic origin of milk is important in determining quality attributes and for economic gain through building brand value associated with origin. Stable isotope signatures and trace element concentrations have been increasingly used in authentication of milk, though information on the power of such technology in verifying agroclimatic origin in small continents with diverse climatic, environmental conditions, and animal management practice is scarce. Therefore, the main objective of this study was to investigate the possibility of using a stable isotope composition of C, N, O, and H and element fingerprints to determine the agroclimatic origin of milk produced in different agroclimatic zones of Sri Lanka. Stable isotopes ratios of C, N, H, and O, and elemental fingerprints of milk samples were determined by IRMS and ICP-MS, respectively. Significant variations were observed in stable isotope ratios, especially δ18O and the mean content of Li, Al, Cr, Mn, and Sr in the bulk milk samples obtained from different agroclimatic zones. A linear discriminant analysis differentiated cow milk produced from four agroclimatic zones based on stable isotope ratios, and the inclusion of elemental ratios enhanced the discriminating ability.
RESUMO
Fresh milk is an important source of essential mineral supplement for humans. However, the levels of trace elements in milk are an important component of its safety and quality. Trace elements also act as a bio-indicator of agricultural pollution. Samples of raw cow milk (n = 68), animal feed [forage (n = 36) and concentrates (n = 14)], and water (n = 35) were collected from different agro-climatic regions of Sri Lanka. The concentrations of 15 trace elements including toxic heavy metals such as Cd, Pb, and As were quantified using inductively coupled plasma mass spectrometry after microwave-assisted digestion. Among the studied trace elements, the mean elemental concentrations of Se, Cd, As, and Cu in cow milk were 18.1, 1.45, 7.35, and 71.7 µg L-1, respectively. The mean concentrations of these elements in forage were 0.216, 0.066, 0.046, and 9.21 mg kg-1, and in concentrate feed were 0.329, 0.202, 0.229, and 2.28 mg kg-1, respectively. The As content of the studied milk was well below the maximum permissible level while 15% of the samples had Pb exceeding the permissible limit of 20 µg L-1. However, As, Cd, and Pb levels in drinking water provided to animals were well below the WHO permissible limits. The results of this study revealed that the trace elements in cow milk depend mainly on the feed, and hence, levels of these contaminants in feed materials should be monitored. Although due to the consumption of milk, the populations have a minor exposure to trace elements and also minimum health risks, a detailed study with a large number of samples is highly recommended.