Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Ecology ; 98(2): 337-348, 2017 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-27869987

RESUMO

There is clear evidence that species' ranges along environmental gradients are constrained by both biotic and abiotic factors, yet their relative importance in structuring realized distributions remains uncertain. We surveyed breeding bird communities while collecting in situ temperature and vegetation data along five elevational transects in the Himalayas differing in temperature variability, habitat zonation, and bird richness in order to disentangle temperature, habitat, and congeneric competition as mechanisms structuring elevational ranges. Our results from species' abundance models representing these three mechanisms differed markedly from previous, foundational research in the tropics. Contrary to general expectations, we found little evidence for competition as a major determinant of range boundaries, with congeneric species limiting only 12% of ranges. Instead, temperature and habitat were found to structure the majority of species' distributions, limiting 48 and 40% of ranges, respectively. Our results suggest that different mechanisms may structure species ranges in the temperate Himalayas compared to tropical systems. Despite recent evidence suggesting temperate species have broader thermal tolerances than tropical species, our findings reinforce the notion that the abiotic environment has significant control over the distributions of temperate species.


Assuntos
Biodiversidade , Aves , Ecossistema , Temperatura , Animais , Dinâmica Populacional
2.
Conserv Biol ; 31(2): 416-426, 2017 04.
Artigo em Inglês | MEDLINE | ID: mdl-27558794

RESUMO

The impacts of land-use change on biodiversity in the Himalayas are poorly known, notwithstanding widespread deforestation and agricultural intensification in this highly biodiverse region. Although intact primary forests harbor many Himalayan birds during breeding, a large number of bird species use agricultural lands during winter. We assessed how Himalayan bird species richness, abundance, and composition during winter are affected by forest loss stemming from agriculture and grazing. Bird surveys along 12 elevational transects within primary forest, low-intensity agriculture, mixed subsistence agriculture, and intensively grazed pastures in winter revealed that bird species richness and abundance were greatest in low-intensity and mixed agriculture, intermediate in grazed pastures, and lowest in primary forest at both local and landscape scales; over twice as many species and individuals were recorded in low-intensity agriculture than in primary forest. Bird communities in primary forests were distinct from those in all other land-use classes, but only 4 species were unique to primary forests. Low-, medium-, and high-intensity agriculture harbored 32 unique species. Of the species observed in primary forest, 80% had equal or greater abundance in low-intensity agricultural lands, underscoring the value of these lands in retaining diverse community assemblages at high densities in winter. Among disturbed landscapes, bird species richness and abundance declined as land-use intensity increased, especially in high-intensity pastures. Our results suggest that agricultural landscapes are important for most Himalayan bird species in winter. But agricultural intensification-especially increased grazing-will likely result in biodiversity losses. Given that forest reserves alone may inadequately conserve Himalayan birds in winter, comprehensive conservation strategies in the region must go beyond protecting intact primary forests and ensure that low-intensity agricultural lands are not extensively converted to high-intensity pastures.


Assuntos
Agricultura , Aves , Conservação dos Recursos Naturais , Animais , Biodiversidade , Ecossistema , Florestas
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA