Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 42
Filtrar
1.
PLoS Comput Biol ; 19(12): e1011708, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-38109436

RESUMO

The sinoatrial node (SAN), the primary pacemaker of the heart, is responsible for the initiation and robust regulation of sinus rhythm. 3D mapping studies of the ex-vivo human heart suggested that the robust regulation of sinus rhythm relies on specialized fibrotically-insulated pacemaker compartments (head, center and tail) with heterogeneous expressions of key ion channels and receptors. They also revealed up to five sinoatrial conduction pathways (SACPs), which electrically connect the SAN with neighboring right atrium (RA). To elucidate the role of these structural-molecular factors in the functional robustness of human SAN, we developed comprehensive biophysical computer models of the SAN based on 3D structural, functional and molecular mapping of ex-vivo human hearts. Our key finding is that the electrical insulation of the SAN except SACPs, the heterogeneous expression of If, INa currents and adenosine A1 receptors (A1R) across SAN pacemaker-conduction compartments are required to experimentally reproduce observed SAN activation patterns and important phenomena such as shifts of the leading pacemaker and preferential SACP. In particular, we found that the insulating border between the SAN and RA, is required for robust SAN function and protection from SAN arrest during adenosine challenge. The heterogeneity in the expression of A1R within the human SAN compartments underlies the direction of pacemaker shift and preferential SACPs in the presence of adenosine. Alterations of INa current and fibrotic remodelling in SACPs can significantly modulate SAN conduction and shift the preferential SACP/exit from SAN. Finally, we show that disease-induced fibrotic remodeling, INa suppression or increased adenosine make the human SAN vulnerable to pacing-induced exit blocks and reentrant arrhythmia. In summary, our computer model recapitulates the structural and functional features of the human SAN and can be a valuable tool for investigating mechanisms of SAN automaticity and conduction as well as SAN arrhythmia mechanisms under different pathophysiological conditions.


Assuntos
Sistema de Condução Cardíaco , Nó Sinoatrial , Humanos , Nó Sinoatrial/fisiologia , Arritmias Cardíacas , Adenosina , Simulação por Computador
3.
J Appl Physiol (1985) ; 134(5): 1287-1299, 2023 05 01.
Artigo em Inglês | MEDLINE | ID: mdl-36995910

RESUMO

Cardiac stromal interaction molecule 1 (STIM1), a key mediator of store-operated Ca2+ entry (SOCE), is a known determinant of cardiomyocyte pathological growth in hypertrophic cardiomyopathy. We examined the role of STIM1 and SOCE in response to exercise-dependent physiological hypertrophy. Wild-type (WT) mice subjected to exercise training (WT-Ex) showed a significant increase in exercise capacity and heart weight compared with sedentary (WT-Sed) mice. Moreover, myocytes from WT-Ex hearts displayed an increase in length, but not width, compared with WT-Sed myocytes. Conversely, exercised cardiac-specific STIM1 knock-out mice (cSTIM1KO-Ex), although displaying significant increase in heart weight and cardiac dilation, evidenced no changes in myocyte size and displayed a decreased exercise capacity, impaired cardiac function, and premature death compared with sedentary cardiac-specific STIM1 knock-out mice (cSTIM1KO-Sed). Confocal Ca2+ imaging demonstrated enhanced SOCE in WT-Ex myocytes compared with WT-Sed myocytes with no measurable SOCE detected in cSTIM1KO myocytes. Exercise training induced a significant increase in cardiac phospho-Akt Ser473 in WT mice but not in cSTIM1KO mice. No differences were observed in phosphorylation of mammalian target of rapamycin (mTOR) and glycogen synthase kinase (GSK) in exercised versus sedentary cSTIM1KO mice hearts. cSTIM1KO-Sed mice showed increased basal MAPK phosphorylation compared with WT-Sed that was not altered by exercise training. Finally, histological analysis revealed exercise resulted in increased autophagy in cSTIM1KO but not in WT myocytes. Taken together, our results suggest that adaptive cardiac hypertrophy in response to exercise training involves STIM1-mediated SOCE. Our results demonstrate that STIM1 is involved in and essential for the myocyte longitudinal growth and mTOR activation in response to endurance exercise training.NEW & NOTEWORTHY Store-operated Ca2+ entry (SOCE) has been implicated in pathological cardiac hypertrophy; however, its role in physiological hypertrophy is unknown. Here we report that SOCE is also essential for physiological cardiac hypertrophy and functional adaptations in response to endurance exercise. These adaptations were associated with activation of AKT/mTOR pathway and curtailed cardiac autophagy and degeneration. Thus, SOCE is a common mechanism and an important bifurcation point for signaling paths involved in physiological and pathological hypertrophy.


Assuntos
Canais de Cálcio , Miócitos Cardíacos , Camundongos , Animais , Miócitos Cardíacos/metabolismo , Canais de Cálcio/metabolismo , Proteínas Proto-Oncogênicas c-akt/metabolismo , Molécula 1 de Interação Estromal/metabolismo , Cardiomegalia/metabolismo , Serina-Treonina Quinases TOR/metabolismo , Camundongos Knockout , Cálcio/metabolismo , Sinalização do Cálcio , Mamíferos/metabolismo
4.
Heart Rhythm ; 20(1): 122-133, 2023 01.
Artigo em Inglês | MEDLINE | ID: mdl-36113768

RESUMO

The sinoatrial node (SAN) is the primary pacemaker of the human heart. It is a single, elongated, 3-dimensional (3D) intramural fibrotic structure located at the junction of the superior vena cava intercaval region bordering the crista terminalis (CT). SAN activation originates in the intranodal pacemakers and is conducted to the atria through 1 or more discrete sinoatrial conduction pathways. The complexity of the 3D SAN pacemaker structure and intramural conduction are underappreciated during clinical multielectrode mapping and ablation procedures of SAN and atrial arrhythmias. In fact, defining and targeting SAN is extremely challenging because, even during sinus rhythm, surface-only multielectrode mapping may not define the leading pacemaker sites in intramural SAN but instead misinterpret them as epicardial or endocardial exit sites through sinoatrial conduction pathways. These SAN exit sites may be distributed up to 50 mm along the CT beyond the ∼20-mm-long anatomic SAN structure. Moreover, because SAN reentrant tachycardia beats may exit through the same sinoatrial conduction pathway as during sinus rhythm, many SAN arrhythmias are underdiagnosed. Misinterpretation of arrhythmia sources and/or mechanisms (eg, enhanced automaticity, intranodal vs CT reentry) limits diagnosis and success of catheter ablation treatments for poorly understood SAN arrhythmias. The aim of this review is to provide a state-of-the-art overview of the 3D structure and function of the human SAN complex, mechanisms of SAN arrhythmias and available approaches for electrophysiological mapping, 3D structural imaging, pharmacologic interventions, and ablation to improve diagnosis and mechanistic treatment of SAN and atrial arrhythmias.


Assuntos
Fibrilação Atrial , Nó Sinoatrial , Humanos , Sistema de Condução Cardíaco/fisiologia , Veia Cava Superior , Átrios do Coração
5.
J Neurosci ; 2022 Jul 25.
Artigo em Inglês | MEDLINE | ID: mdl-35882560

RESUMO

A rod-shaped appendage called a primary cilium projects from the soma of most central neurons in the mammalian brain. The importance of cilia within the nervous system is highlighted by the fact that human syndromes linked to primary cilia dysfunction, collectively termed ciliopathies, are associated with numerous neuropathologies, including hyperphagia-induced obesity, neuropsychiatric disorders, and learning and memory deficits. Neuronal cilia are enriched with signaling molecules, including specific G protein-coupled receptors (GPCRs) and their downstream effectors, suggesting they act as sensory organelles that respond to neuromodulators in the extracellular space. We previously showed that GPCR ciliary localization is disrupted in neurons from mouse models of the ciliopathy Bardet-Biedl syndrome (BBS). Based on this finding we hypothesized that mislocalization of ciliary GPCRs may impact receptor signaling and contribute to the BBS phenotypes. Here, we show that disrupting localization of the ciliary GPCR dopamine receptor 1 (D1) in male and female mice, either by loss of a BBS protein or loss of the cilium itself, specifically in D1-expressing neurons, results in obesity. Interestingly, the weight gain is associated with reduced locomotor activity, rather than increased food intake. Moreover, loss of a BBS protein or cilia on D1-expressing neurons leads to a reduction in D1-mediated signaling. Together, these results indicate that cilia impact D1 activity in the nervous system and underscore the importance of neuronal cilia for proper GPCR signaling.SIGNIFICANCE STATEMENT:Most mammalian neurons possess solitary appendages called primary cilia. These rod-shaped structures are enriched with signaling proteins, such as G protein-coupled receptors (GPCRs), suggesting they respond to neuromodulators. This study examines the consequences of disrupting ciliary localization of the GPCR dopamine receptor 1 (D1) in D1-expressing neurons. Remarkably, mice that have either abnormal accumulation of D1 in cilia or loss of D1 ciliary localization become obese. In both cases the obesity is associated with lower locomotor activity rather than overeating. As D1 activation increases locomotor activity, these results are consistent with a reduction in D1 signaling. Indeed, we found that D1-mediated signaling is reduced in brain slices from both mouse models. Thus, cilia impact D1 signaling in the brain.

6.
Sci Rep ; 11(1): 19328, 2021 09 29.
Artigo em Inglês | MEDLINE | ID: mdl-34588502

RESUMO

Heart failure (HF) is frequently accompanied with the sinoatrial node (SAN) dysfunction, which causes tachy-brady arrhythmias and increased mortality. MicroRNA (miR) alterations are associated with HF progression. However, the transcriptome of HF human SAN, and its role in HF-associated remodeling of ion channels, transporters, and receptors responsible for SAN automaticity and conduction impairments is unknown. We conducted comprehensive high-throughput transcriptomic analysis of pure human SAN primary pacemaker tissue and neighboring right atrial tissue from human transplanted HF hearts (n = 10) and non-failing (nHF) donor hearts (n = 9), using next-generation sequencing. Overall, 47 miRs and 832 mRNAs related to multiple signaling pathways, including cardiac diseases, tachy-brady arrhythmias and fibrosis, were significantly altered in HF SAN. Of the altered miRs, 27 are predicted to regulate mRNAs of major ion channels and neurotransmitter receptors which are involved in SAN automaticity (e.g. HCN1, HCN4, SLC8A1) and intranodal conduction (e.g. SCN5A, SCN8A) or both (e.g. KCNJ3, KCNJ5). Luciferase reporter assays were used to validate interactions of miRs with predicted mRNA targets. In conclusion, our study provides a profile of altered miRs in HF human SAN, and a novel transcriptome blueprint to identify molecular targets for SAN dysfunction and arrhythmia treatments in HF.


Assuntos
Arritmias Cardíacas/complicações , Insuficiência Cardíaca/genética , MicroRNAs/metabolismo , RNA Mensageiro/metabolismo , Nó Sinoatrial/fisiopatologia , Adulto , Idoso , Arritmias Cardíacas/genética , Feminino , Perfilação da Expressão Gênica , Ensaios de Triagem em Larga Escala , Humanos , Masculino , MicroRNAs/análise , Pessoa de Meia-Idade , RNA Mensageiro/análise , Transcriptoma , Adulto Jovem
7.
Circulation ; 144(2): 126-143, 2021 07 13.
Artigo em Inglês | MEDLINE | ID: mdl-33874740

RESUMO

BACKGROUND: Up to 50% of the adult human sinoatrial node (SAN) is composed of dense connective tissue. Cardiac diseases including heart failure (HF) may increase fibrosis within the SAN pacemaker complex, leading to impaired automaticity and conduction of electric activity to the atria. Unlike the role of cardiac fibroblasts in pathologic fibrotic remodeling and tissue repair, nothing is known about fibroblasts that maintain the inherently fibrotic SAN environment. METHODS: Intact SAN pacemaker complex was dissected from cardioplegically arrested explanted nonfailing hearts (non-HF; n=22; 48.7±3.1 years of age) and human failing hearts (n=16; 54.9±2.6 years of age). Connective tissue content was quantified from Masson trichrome-stained head-center and center-tail SAN sections. Expression of extracellular matrix proteins, including collagens 1 and 3A1, CILP1 (cartilage intermediate layer protein 1), and POSTN (periostin), and fibroblast and myofibroblast numbers were quantified by in situ and in vitro immunolabeling. Fibroblasts from the central intramural SAN pacemaker compartment (≈10×5×2 mm3) and right atria were isolated, cultured, passaged once, and treated ± transforming growth factor ß1 and subjected to comprehensive high-throughput next-generation sequencing of whole transcriptome, microRNA, and proteomic analyses. RESULTS: Intranodal fibrotic content was significantly higher in SAN pacemaker complex from HF versus non-HF hearts (57.7±2.6% versus 44.0±1.2%; P<0.0001). Proliferating phosphorylated histone 3+/vimentin+/CD31- (cluster of differentiation 31) fibroblasts were higher in HF SAN. Vimentin+/α-smooth muscle actin+/CD31- myofibroblasts along with increased interstitial POSTN expression were found only in HF SAN. RNA sequencing and proteomic analyses identified unique differences in mRNA, long noncoding RNA, microRNA, and proteomic profiles between non-HF and HF SAN and right atria fibroblasts and transforming growth factor ß1-induced myofibroblasts. Specifically, proteins and signaling pathways associated with extracellular matrix flexibility, stiffness, focal adhesion, and metabolism were altered in HF SAN fibroblasts compared with non-HF SAN. CONCLUSIONS: This study revealed increased SAN-specific fibrosis with presence of myofibroblasts, CILP1, and POSTN-positive interstitial fibrosis only in HF versus non-HF human hearts. Comprehensive proteotranscriptomic profiles of SAN fibroblasts identified upregulation of genes and proteins promoting stiffer SAN extracellular matrix in HF hearts. Fibroblast-specific profiles generated by our proteotranscriptomic analyses of the human SAN provide a comprehensive framework for future studies to investigate the role of SAN-specific fibrosis in cardiac rhythm regulation and arrhythmias.


Assuntos
Fibroblastos/metabolismo , Insuficiência Cardíaca/fisiopatologia , Nó Sinoatrial/fisiopatologia , Feminino , Humanos , Masculino , Pessoa de Meia-Idade
8.
J Mol Cell Cardiol ; 151: 56-71, 2021 02.
Artigo em Inglês | MEDLINE | ID: mdl-33130148

RESUMO

Atrial fibrillation (AF) occurrence and maintenance is associated with progressive remodeling of electrophysiological (repolarization and conduction) and 3D structural (fibrosis, fiber orientations, and wall thickness) features of the human atria. Significant diversity in AF etiology leads to heterogeneous arrhythmogenic electrophysiological and structural substrates within the 3D structure of the human atria. Since current clinical methods have yet to fully resolve the patient-specific arrhythmogenic substrates, mechanism-based AF treatments remain underdeveloped. Here, we review current knowledge from in-vivo, ex-vivo, and in-vitro human heart studies, and discuss how these studies may provide new insights on the synergy of atrial electrophysiological and 3D structural features in AF maintenance. In-vitro studies on surgically acquired human atrial samples provide a great opportunity to study a wide spectrum of AF pathology, including functional changes in single-cell action potentials, ion channels, and gene/protein expression. However, limited size of the samples prevents evaluation of heterogeneous AF substrates and reentrant mechanisms. In contrast, coronary-perfused ex-vivo human hearts can be studied with state-of-the-art functional and structural technologies, such as high-resolution near-infrared optical mapping and contrast-enhanced MRI. These imaging modalities can resolve atrial arrhythmogenic substrates and their role in reentrant mechanisms maintaining AF and validate clinical approaches. Nonetheless, longitudinal studies are not feasible in explanted human hearts. As no approach is perfect, we suggest that combining the strengths of direct human atrial studies with high fidelity approaches available in the laboratory and in realistic patient-specific computer models would elucidate deeper knowledge of AF mechanisms. We propose that a comprehensive translational pipeline from ex-vivo human heart studies to longitudinal clinically relevant AF animal studies and finally to clinical trials is necessary to identify patient-specific arrhythmogenic substrates and develop novel AF treatments.


Assuntos
Fibrilação Atrial/fisiopatologia , Fenômenos Eletrofisiológicos , Átrios do Coração/patologia , Átrios do Coração/fisiopatologia , Imageamento Tridimensional , Miocárdio/patologia , Inteligência Artificial , Humanos
9.
PLoS One ; 15(10): e0237520, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33002030

RESUMO

OBJECTIVES: Gout is the most prevalent inflammatory arthritis. To study the effects of regular physical activity and exercise intensity on inflammation and clinical outcome, we examined inflammatory pathogenesis in an acute model of murine gout and analyzed human gout patient clinical data as a function of physical activity. METHODS: NF-κB-luciferase reporter mice were organized into four groups and exercised at 0 m/min (non-exercise), 8 m/min (low-intensity), 11 m/min (moderate-intensity), and 15 m/min (high-intensity) for two weeks. Mice subsequently received intra-articular monosodium urate (MSU) crystal injections (0.5mg) and the inflammatory response was analyzed 15 hours later. Ankle swelling, NF-κB activity, histopathology, and tissue infiltration by macrophages and neutrophils were measured. Toll-like receptor (TLR)2 was quantified on peripheral monocytes/neutrophils by flow cytometry and both cytokines and chemokines were measured in serum or synovial aspirates. Clinical data and questionnaires accessing overall physical activity levels were collected from gout patients. RESULTS: Injection of MSU crystals produced a robust inflammatory response with increased ankle swelling, NF-κB activity, and synovial infiltration by macrophages and neutrophils. These effects were partially mitigated by low and moderate-intensity exercise. Furthermore, IL-1ß was decreased at the site of MSU crystal injection, TLR2 expression on peripheral neutrophils was downregulated, and expression of CXCL1 in serum was suppressed with low and moderate-intensity exercise. Conversely, the high-intensity exercise group closely resembled the non-exercised control group by nearly all metrics of inflammation measured in this study. Physically active gout patients had significantly less flares/yr, decreased C-reactive protein (CRP) levels, and lower pain scores relative to physically inactive patients. CONCLUSIONS: Regular, moderate physical activity can produce a quantifiable anti-inflammatory effect capable of partially mitigating the pathologic response induced by intra-articular MSU crystals by downregulating TLR2 expression on circulating neutrophils and suppressing systemic CXCL1. Low and moderate-intensity exercise produces this anti-inflammatory effect to varying degrees, while high-intensity exercise provides no significant difference in inflammation compared to non-exercising controls. Consistent with the animal model, gout patients with higher levels of physical activity have more favorable prognostic data. Collectively, these data suggest the need for further research and may be the foundation to a future paradigm-shift in conventional exercise recommendations provided by Rheumatologists to gout patients.


Assuntos
Quimiocina CXCL1/sangue , Gota/terapia , Inflamação/prevenção & controle , Condicionamento Físico Animal , Receptor 2 Toll-Like/sangue , Animais , Modelos Animais de Doenças , Regulação para Baixo , Exercício Físico/fisiologia , Feminino , Gota/sangue , Gota/patologia , Humanos , Inflamação/sangue , Inflamação/patologia , Interleucina-1beta/sangue , Interleucina-1beta/metabolismo , Macrófagos/patologia , Masculino , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Transgênicos , Neutrófilos/metabolismo , Neutrófilos/patologia , Dor/prevenção & controle , Prognóstico , Membrana Sinovial/metabolismo , Membrana Sinovial/patologia
10.
J Am Heart Assoc ; 9(19): e017789, 2020 10 20.
Artigo em Inglês | MEDLINE | ID: mdl-33006292

RESUMO

Background Atrial fibrillation (AF) driver mechanisms are obscured to clinical multielectrode mapping approaches that provide partial, surface-only visualization of unstable 3-dimensional atrial conduction. We hypothesized that transient modulation of refractoriness by pharmacologic challenge during multielectrode mapping improves visualization of hidden paths of reentrant AF drivers for targeted ablation. Methods and Results Pharmacologic challenge with adenosine was tested in ex vivo human hearts with a history of AF and cardiac diseases by multielectrode and high-resolution subsurface near-infrared optical mapping, integrated with 3-dimensional structural imaging and heart-specific computational simulations. Adenosine challenge was also studied on acutely terminated AF drivers in 10 patients with persistent AF. Ex vivo, adenosine stabilized reentrant driver paths within arrhythmogenic fibrotic hubs and improved visualization of reentrant paths, previously seen as focal or unstable breakthrough activation pattern, for targeted AF ablation. Computational simulations suggested that shortening of atrial refractoriness by adenosine may (1) improve driver stability by annihilating spatially unstable functional blocks and tightening reentrant circuits around fibrotic substrates, thus unmasking the common reentrant path; and (2) destabilize already stable reentrant drivers along fibrotic substrates by accelerating competing fibrillatory wavelets or secondary drivers. In patients with persistent AF, adenosine challenge unmasked hidden common reentry paths (9/15 AF drivers, 41±26% to 68±25% visualization), but worsened visualization of previously visible reentry paths (6/15, 74±14% to 34±12%). AF driver ablation led to acute termination of AF. Conclusions Our ex vivo to in vivo human translational study suggests that transiently altering atrial refractoriness can stabilize reentrant paths and unmask arrhythmogenic hubs to guide targeted AF driver ablation treatment.


Assuntos
Fibrilação Atrial/etiologia , Coração/fisiopatologia , Adenosina/farmacologia , Adulto , Fibrilação Atrial/patologia , Fibrilação Atrial/fisiopatologia , Feminino , Coração/efeitos dos fármacos , Átrios do Coração/patologia , Átrios do Coração/fisiopatologia , Humanos , Imageamento Tridimensional , Masculino , Microeletrodos , Pessoa de Meia-Idade , Miocárdio/patologia , Imagens com Corantes Sensíveis à Voltagem
11.
Lupus ; 29(13): 1790-1799, 2020 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-33045900

RESUMO

OBJECTIVE: Since enhanced cardiac magnetic resonance imaging (cMRI) signals have been associated with lupus disease activity in humans prior to renal failure and novel, cardiac-focused therapeutic strategies could be investigated with an associated animal model, autoimmune myocarditis was characterized in murine lupus nephritis (NZM2410). METHODS: Weekly blood urea nitrogen (BUN) levels and weights were recorded. Cardiac function was assessed by echocardiogram. Myocardial edema was measured with quantitative T2 cMRI mapping. Endpoint serum and cardiac tissue were collected for histopathological analysis and cytokine measurements. RESULTS: Despite showing no signs of significant renal disease, mice displayed evidence of myocarditis and fibrosis histologically at 30-35 weeks. Moreover, T2 cMRI mapping displayed robust signals and analysis of sagittal heart sections showed significant myocardium thickening. Cytokine expression levels of IL-2, IL-10, TNF-α, CXCL1, and IL-6 were significantly enhanced in serum. Echocardiograms demonstrated significantly increased ventricular diameters and reduced ejection fractions, while immunohistochemical staining identified CD4+ and CD8+ T cells, and IL-17 in cardiac infiltrates. Human lupus cardiac tissue showed similar histopathology with enhanced infiltrates by H&E, fibrosis, and CD4+ detection. CONCLUSIONS: Histopathology, functional abnormalities, and enhanced cMRI signals indicative of myocarditis are detected in NZM2410 mice without glomerulonephritis, which supports the primary pathological role of autoimmune-mediated, cardiac-targeted inflammation in lupus.


Assuntos
Glomerulonefrite/patologia , Nefrite Lúpica/patologia , Miocardite/patologia , Miocárdio/patologia , Animais , Linfócitos T CD4-Positivos/imunologia , Linfócitos T CD8-Positivos/imunologia , Modelos Animais de Doenças , Ecocardiografia , Feminino , Fibrose , Interleucina-17/metabolismo , Nefrite Lúpica/imunologia , Nefrite Lúpica/metabolismo , Imageamento por Ressonância Magnética , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Miocardite/imunologia , Miocardite/metabolismo
12.
Nat Commun ; 11(1): 512, 2020 01 24.
Artigo em Inglês | MEDLINE | ID: mdl-31980605

RESUMO

Mechanisms for human sinoatrial node (SAN) dysfunction are poorly understood and whether human SAN excitability requires voltage-gated sodium channels (Nav) remains controversial. Here, we report that neuronal (n)Nav blockade and selective nNav1.6 blockade during high-resolution optical mapping in explanted human hearts depress intranodal SAN conduction, which worsens during autonomic stimulation and overdrive suppression to conduction failure. Partial cardiac (c)Nav blockade further impairs automaticity and intranodal conduction, leading to beat-to-beat variability and reentry. Multiple nNav transcripts are higher in SAN vs atria; heterogeneous alterations of several isoforms, specifically nNav1.6, are associated with heart failure and chronic alcohol consumption. In silico simulations of Nav distributions suggest that INa is essential for SAN conduction, especially in fibrotic failing hearts. Our results reveal that not only cNav but nNav are also integral for preventing disease-induced failure in human SAN intranodal conduction. Disease-impaired nNav may underlie patient-specific SAN dysfunctions and should be considered to treat arrhythmias.


Assuntos
Arritmias Cardíacas/fisiopatologia , Sistema de Condução Cardíaco/fisiopatologia , Neurônios/metabolismo , Nó Sinoatrial/fisiopatologia , Canais de Sódio/metabolismo , Potenciais de Ação/fisiologia , Adulto , Idoso , Alcoolismo/genética , Arritmias Cardíacas/genética , Doença Crônica , Simulação por Computador , Feminino , Átrios do Coração/metabolismo , Átrios do Coração/fisiopatologia , Sistema de Condução Cardíaco/metabolismo , Insuficiência Cardíaca/genética , Humanos , Masculino , Pessoa de Meia-Idade , Modelos Cardiovasculares , Imagem Óptica , Subunidades Proteicas/metabolismo , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Nó Sinoatrial/metabolismo , Canais de Sódio/genética , Estresse Fisiológico , Adulto Jovem
13.
JCI Insight ; 4(20)2019 10 17.
Artigo em Inglês | MEDLINE | ID: mdl-31550236

RESUMO

Increased fibrosis is a characteristic remodeling response to biomechanical and neurohumoral stress and a determinant of cardiac mechanical and electrical dysfunction in disease. Stress-induced activation of cardiac fibroblasts (CFs) is a critical step in the fibrotic response, although the precise sequence of events underlying activation of these critical cells in vivo remain unclear. Here, we tested the hypothesis that a ßIV-spectrin/STAT3 complex is essential for maintenance of a quiescent phenotype (basal nonactivated state) in CFs. We reported increased fibrosis, decreased cardiac function, and electrical impulse conduction defects in genetic and acquired mouse models of ßIV-spectrin deficiency. Loss of ßIV-spectrin function promoted STAT3 nuclear accumulation and transcriptional activity, and it altered gene expression and CF activation. Furthermore, we demonstrate that a quiescent phenotype may be restored in ßIV-spectrin-deficient fibroblasts by expressing a ßIV-spectrin fragment including the STAT3-binding domain or through pharmacological STAT3 inhibition. We found that in vivo STAT3 inhibition abrogates fibrosis and cardiac dysfunction in the setting of global ßIV-spectrin deficiency. Finally, we demonstrate that fibroblast-specific deletion of ßIV-spectrin is sufficient to induce fibrosis and decreased cardiac function. We propose that the ßIV-spectrin/STAT3 complex is a determinant of fibroblast phenotype and fibrosis, with implications for remodeling response in cardiovascular disease (CVD).


Assuntos
Doenças Cardiovasculares/fisiopatologia , Fibroblastos/patologia , Ventrículos do Coração/patologia , Fator de Transcrição STAT3/metabolismo , Espectrina/deficiência , Animais , Doenças Cardiovasculares/genética , Doenças Cardiovasculares/patologia , Modelos Animais de Doenças , Feminino , Fibrose , Ventrículos do Coração/citologia , Ventrículos do Coração/fisiopatologia , Humanos , Masculino , Camundongos , Camundongos Knockout , Fator de Transcrição STAT3/antagonistas & inibidores , Espectrina/genética , Remodelação Ventricular
14.
JACC Clin Electrophysiol ; 4(12): 1501-1515, 2018 12.
Artigo em Inglês | MEDLINE | ID: mdl-30573112

RESUMO

OBJECTIVES: This study sought to improve atrial fibrillation (AF) driver identification by integrating clinical multielectrode mapping with driver fingerprints defined by high-resolution ex vivo 3-dimensional (3D) functional and structural imaging. BACKGROUND: Clinical multielectrode mapping of AF drivers suffers from variable contact, signal processing, and structural complexity within the 3D human atrial wall, raising questions on the validity of such drivers. METHODS: Sustained AF was mapped in coronary-perfused explanted human hearts (n = 11) with transmural near-infrared optical mapping (∼0.3 mm2 resolution). Simultaneously, custom FIRMap catheters (∼9 × 9 mm2 resolution) mapped endocardial and epicardial surfaces, which were analyzed by Focal Impulse and Rotor Mapping activation and Rotational Activity Profile (Abbott Labs, Chicago, Illinois). Functional maps were integrated with contrast-enhanced cardiac magnetic resonance imaging (∼0.1 mm3 resolution) analysis of 3D fibrosis architecture. RESULTS: During sustained AF, near-infrared optical mapping identified 1 to 2 intramural, spatially stable re-entrant AF drivers per heart. Driver targeted ablation affecting 2.2 ± 1.1% of the atrial surface terminated and prevented AF. Driver regions had significantly higher phase singularity density and dominant frequency than neighboring nondriver regions. Focal Impulse and Rotor Mapping had 80% sensitivity to near-infrared optical mapping-defined driver locations (16 of 20), and matched 14 of 20 driver visualizations: 10 of 14 re-entries seen with Rotational Activity Profile; and 4 of 6 breakthrough/focal patterns. Focal Impulse and Rotor Mapping detected 1.1 ± 0.9 false-positive rotational activity profiles per recording, but these regions had lower intramural contrast-enhanced cardiac magnetic resonance imaging fibrosis than did driver regions (14.9 ± 7.9% vs. 23.2 ± 10.5%; p < 0.005). CONCLUSIONS: The study revealed that both re-entrant and breakthrough/focal AF driver patterns visualized by surface-only clinical multielectrodes can represent projections of 3D intramural microanatomic re-entries. Integration of multielectrode mapping and 3D fibrosis analysis may enhance AF driver detection, thereby improving the efficacy of driver-targeted ablation.


Assuntos
Fibrilação Atrial , Técnicas de Imagem Cardíaca/métodos , Técnicas Eletrofisiológicas Cardíacas/métodos , Coração , Fibrilação Atrial/diagnóstico por imagem , Fibrilação Atrial/fisiopatologia , Coração/diagnóstico por imagem , Coração/fisiopatologia , Humanos , Interpretação de Imagem Assistida por Computador , Imageamento por Ressonância Magnética , Processamento de Sinais Assistido por Computador
16.
Heart Rhythm ; 15(3): 430-441, 2018 03.
Artigo em Inglês | MEDLINE | ID: mdl-29030236

RESUMO

BACKGROUND: Long-term aerobic exercise alters autonomic balance, which may not be favorable in heart rate (HR)-dependent arrhythmic diseases including catecholaminergic polymorphic ventricular tachycardia (CPVT) because of preexisting bradycardia and increased sensitivity to parasympathetic stimulation. OBJECTIVE: The purpose of this study was to determine whether long-term exercise-induced autonomic adaptations modify CPVT susceptibility. METHODS: We determined exercise-induced parasympathetic effects on HR, arrhythmia incidence, and intracellular sarcoplasmic reticulum (SR) Ca2+ leak in atrial (ACM) and ventricular (VCM) cardiomyocytes, in exercised (EX) calsequestrin knockout (CASQ2-/-) mice, a model of CPVT. RESULTS: Although 8-week treadmill running improved exercise capacity in EX CPVT mice, the incidence and duration of ventricular tachycardia also increased. HR variability analyses revealed an increased high-frequency component of the power spectrum and root mean square of successive differences in R-R intervals indicating accentuated vagal antagonism during ß-adrenergic stimulation resulting in negligible HR acceleration. In EX CASQ2-/- VCM, peak amplitude of Ca2+ transient (CaT) increased, whereas SR Ca2+ content decreased. Aberrant Ca2+ sparks occurred at baseline, which was exacerbated with isoproterenol. Notably, although 10 µM of the cholinergic agonist carbachol prevented isoproterenol-induced Ca2+ waves in ACM, CaT amplitude, SR Ca2+ load, and isoproterenol-induced Ca2+ waves paradoxically increased in VCM. In parallel, ventricular ryanodine receptor (RyR2) protein expression increased, whereas protein kinase A- and calmodulin-dependent protein kinase II-mediated phosphorylation of RyR2 was not significantly altered, which could imply an increased number of "leaky" channels. CONCLUSION: Our novel results suggest that long-term exercise in CASQ2-/- mice increases susceptibility to ventricular arrhythmias by accentuating vagal antagonism during ß-adrenergic challenge, which prevents HR acceleration and exacerbates abnormal RyR2 Ca2+ leak in EX CASQ2-/- VCM.


Assuntos
Calsequestrina/metabolismo , Miócitos Cardíacos/metabolismo , Canal de Liberação de Cálcio do Receptor de Rianodina/metabolismo , Taquicardia Ventricular/metabolismo , Nervo Vago/fisiopatologia , Animais , Modelos Animais de Doenças , Seguimentos , Masculino , Camundongos , Camundongos Knockout , Miócitos Cardíacos/patologia , Condicionamento Físico Animal , Taquicardia Ventricular/patologia , Taquicardia Ventricular/fisiopatologia , Fatores de Tempo
17.
Sci Transl Med ; 9(400)2017 07 26.
Artigo em Inglês | MEDLINE | ID: mdl-28747516

RESUMO

The human sinoatrial node (SAN) efficiently maintains heart rhythm even under adverse conditions. However, the specific mechanisms involved in the human SAN's ability to prevent rhythm failure, also referred to as its robustness, are unknown. Challenges exist because the three-dimensional (3D) intramural structure of the human SAN differs from well-studied animal models, and clinical electrode recordings are limited to only surface atrial activation. Hence, to innovate the translational study of human SAN structural and functional robustness, we integrated intramural optical mapping, 3D histology reconstruction, and molecular mapping of the ex vivo human heart. When challenged with adenosine or atrial pacing, redundant intranodal pacemakers within the human SAN maintained automaticity and delivered electrical impulses to the atria through sinoatrial conduction pathways (SACPs), thereby ensuring a fail-safe mechanism for robust maintenance of sinus rhythm. During adenosine perturbation, the primary central SAN pacemaker was suppressed, whereas previously inactive superior or inferior intranodal pacemakers took over automaticity maintenance. Sinus rhythm was also rescued by activation of another SACP when the preferential SACP was suppressed, suggesting two independent fail-safe mechanisms for automaticity and conduction. The fail-safe mechanism in response to adenosine challenge is orchestrated by heterogeneous differences in adenosine A1 receptors and downstream GIRK4 channel protein expressions across the SAN complex. Only failure of all pacemakers and/or SACPs resulted in SAN arrest or conduction block. Our results unmasked reserve mechanisms that protect the human SAN pacemaker and conduction complex from rhythm failure, which may contribute to treatment of SAN arrhythmias.


Assuntos
Arritmias Cardíacas/fisiopatologia , Nó Sinoatrial/metabolismo , Nó Sinoatrial/fisiologia , Potenciais de Ação/efeitos dos fármacos , Adenosina/farmacologia , Adulto , Idoso , Arritmias Cardíacas/metabolismo , Arritmias Cardíacas/prevenção & controle , Eletrocardiografia , Feminino , Átrios do Coração/metabolismo , Frequência Cardíaca/efeitos dos fármacos , Humanos , Técnicas In Vitro , Pessoa de Meia-Idade , Nó Sinoatrial/efeitos dos fármacos
18.
J Endocrinol ; 235(1): 27-38, 2017 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-28739822

RESUMO

Hypoxia-inducible lipid droplet-associated protein (HILPDA) has been shown to localize to lipid droplets in nutrient-responsive cell types such as hepatocytes and adipocytes. However, its role in the control of whole-body homeostasis is not known. We sought to measure cell-intrinsic and systemic stress responses in a mouse strain harboring whole-body Hilpda deficiency. We generated a genetically engineered mouse model of whole-body HILPDA deficiency by replacing the coding Hilpda exon with luciferase. We subjected the knockout animals to environmental stresses and measured whole-animal metabolic and behavioral parameters. Brown adipocyte precursors were isolated and differentiated in vitro to quantify the impact of HILPDA ablation in lipid storage and mobilization in these cells. HILPDA-knockout animals are viable and fertile, but show reduced ambulatory activity and oxygen consumption at regular housing conditions. Acclimatization at thermoneutral conditions abolished the phenotypic differences observed at 22°C. When fasted, HILPDA KO mice are unable to maintain body temperature and become hypothermic at 22°C, without apparent abnormalities in blood chemistry parameters or tissue triglyceride content. HILPDA expression was upregulated during adipocyte differentiation and activation in vitro; however, it was not required for lipid droplet formation in brown adipocytes. We conclude that HILPDA is necessary for efficient fuel utilization suggesting a homeostatic role for Hilpda in sub-optimal environments.


Assuntos
Regulação da Temperatura Corporal , Proteínas de Ligação a DNA/metabolismo , Jejum/fisiologia , Adipócitos/metabolismo , Animais , Proteínas de Ligação a DNA/genética , Feminino , Camundongos , Camundongos Knockout , Estresse Fisiológico , Triglicerídeos/metabolismo
19.
Circulation ; 134(6): 486-98, 2016 Aug 09.
Artigo em Inglês | MEDLINE | ID: mdl-27462069

RESUMO

BACKGROUND: Adenosine provokes atrial fibrillation (AF) with a higher activation frequency in right atria (RA) versus left atria (LA) in patients, but the underlying molecular and functional substrates are unclear. We tested the hypothesis that adenosine-induced AF is driven by localized reentry in RA areas with highest expression of adenosine A1 receptor and its downstream GIRK (G protein-coupled inwardly rectifying potassium channels) channels (IK,Ado). METHODS: We applied biatrial optical mapping and immunoblot mapping of various atrial regions to reveal the mechanism of adenosine-induced AF in explanted failing and nonfailing human hearts (n=37). RESULTS: Optical mapping of coronary-perfused atria (n=24) revealed that adenosine perfusion (10-100 µmol/L) produced more significant shortening of action potential durations in RA (from 290±45 to 239±41 ms, 17.3±10.4%; P<0.01) than LA (from 307±24 to 286±23 ms, 6.7±6.6%; P<0.01). In 10 hearts, adenosine induced AF (317±116 s) that, when sustained (≥2 minutes), was primarily maintained by 1 to 2 localized reentrant drivers in lateral RA. Tertiapin (10-100 nmol/L), a selective GIRK channel blocker, counteracted adenosine-induced action potential duration shortening and prevented AF induction. Immunoblotting showed that the superior/middle lateral RA had significantly higher adenosine A1 receptor (2.7±1.7-fold; P<0.01) and GIRK4 (1.7±0.8-fold; P<0.05) protein expression than lateral/posterior LA. CONCLUSIONS: This study revealed a 3-fold RA-to-LA adenosine A1 receptor protein expression gradient in the human heart, leading to significantly greater RA versus LA repolarization sensitivity in response to adenosine. Sustained adenosine-induced AF is maintained by reentrant drivers localized in lateral RA regions with the highest adenosine A1 receptor/GIRK4 expression. Selective atrial GIRK channel blockade may effectively treat AF during conditions with increased endogenous adenosine.


Assuntos
Adenosina/toxicidade , Fibrilação Atrial/induzido quimicamente , Fibrilação Atrial/metabolismo , Canais de Potássio Corretores do Fluxo de Internalização Acoplados a Proteínas G/biossíntese , Átrios do Coração/metabolismo , Receptor A1 de Adenosina/biossíntese , Adulto , Idoso , Feminino , Regulação da Expressão Gênica , Coração/diagnóstico por imagem , Coração/efeitos dos fármacos , Átrios do Coração/diagnóstico por imagem , Átrios do Coração/efeitos dos fármacos , Sistema de Condução Cardíaco/diagnóstico por imagem , Sistema de Condução Cardíaco/efeitos dos fármacos , Sistema de Condução Cardíaco/metabolismo , Humanos , Masculino , Pessoa de Meia-Idade , Técnicas de Cultura de Órgãos , Tomografia por Emissão de Pósitrons combinada à Tomografia Computadorizada
20.
PLoS One ; 11(4): e0153198, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-27055280

RESUMO

The neuroendocrine effects of leptin on metabolism hold promise to be translated into a complementary therapy to traditional insulin therapy for diabetes and obesity. However, injections of leptin can provoke inflammation. We tested the effects of leptin, produced in the physiological adipocyte location, on metabolism in mouse models of genetic and dietary obesity. We generated 3T3-L1 adipocytes constitutively secreting leptin and encapsulated them in a poly-L-lysine membrane, which protects the cells from immune rejection. Ob/ob mice (OB) were injected with capsules containing no cells (empty, OB[Emp]), adipocytes (OB[3T3]), or adipocytes overexpressing leptin (OB[Lep]) into both visceral fat depots. Leptin was found in the plasma of OB[Lep], but not OB[Emp] and OB[3T3] mice at the end of treatment (72 days). The OB[Lep] and OB[3T3] mice have transiently suppressed appetite and weight loss compared to OB[Emp]. Only OB[Lep] mice have greater brown fat mass, metabolic rate, and reduced resistin plasma levels compared to OB[Emp]. Glucose tolerance was markedly better in OB[Lep] vs. OB[Emp] and OB[3T3] mice as well as in wild type mice with high-fat diet-induced obesity and insulin resistance treated with encapsulated leptin-producing adipocytes. Our proof-of-principle study provides evidence of long-term improvement of glucose tolerance with encapsulated adipocytes producing leptin.


Assuntos
Adipócitos/metabolismo , Tecido Adiposo Marrom/patologia , Intolerância à Glucose/prevenção & controle , Leptina/metabolismo , Obesidade/fisiopatologia , Resistina/metabolismo , Células 3T3-L1 , Adipócitos/citologia , Tecido Adiposo Marrom/metabolismo , Animais , Western Blotting , Diferenciação Celular , Células Cultivadas , Intolerância à Glucose/genética , Intolerância à Glucose/metabolismo , Resistência à Insulina , Leptina/genética , Masculino , Camundongos , Camundongos Obesos , RNA Mensageiro/genética , Reação em Cadeia da Polimerase em Tempo Real , Resistina/genética , Reação em Cadeia da Polimerase Via Transcriptase Reversa
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA