Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
PLoS One ; 18(12): e0287702, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-38055693

RESUMO

BACKGROUND: Plasmodium falciparum cases are rising in China due to the imported malaria cases from African countries. The main goal of this study is to examine the impact of imported malaria cases in African countries on the rise of P. falciparum cases in China before and during the COVID-19 pandemic. METHODS: A generalized regression model was used to investigate the association of time trends between imported malaria cases from 45 African countries and P. falciparum cases in 31 provinces of China from 2012 to 2018 before the COVID-19 pandemic and during the COVID-19 pandemic from October 2020 to May 2021. Based on the analysis, we proposed a statistical and deep learning hybrid approach to model the resurgence of malaria in China using monthly data of P. falciparum from 2004 to 2016. This study builds a hybrid model known as the ARIMA-GRU approach for modeling the P. falciparum cases in all provinces of China and the number of malaria deaths in China before and during the COVID-19 pandemic. RESULTS: The analysis showed an emerging link between the rise of imported malaria cases from Africa and P. falciparum cases in many provinces of China. Many imported malaria cases from Africa were P. falciparum cases. The proposed deep learning model achieved a high prediction accuracy score on the testing dataset of 96%. CONCLUSION: The study provided an analysis of the reduction of P. falciparum cases and deaths caused by imported P. falciparum cases during the COVID-19 pandemic due to the control measures regarding the limitation of international travel in China. The Chinese government has to prepare the imported malaria control measures after the normalization of international travel, to prevent the resurgence of malaria disease in China.


Assuntos
COVID-19 , Aprendizado Profundo , Malária Falciparum , Malária , Humanos , Plasmodium falciparum , Pandemias , COVID-19/epidemiologia , Malária/epidemiologia , Malária/prevenção & controle , Malária Falciparum/epidemiologia , China/epidemiologia , África/epidemiologia , Viagem
2.
Infect Dis Model ; 8(1): 1-10, 2023 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-36582746

RESUMO

Plasmodium vivax and Plasmodium falciparum cases have opposite trends in Anhui China in the past decade. Long term and seasonal trends in the transmission rate of P. falciparum in Africa has been well studied, however that of P. vivax transmitted by Anopheles sinensis in China has not been investigated. There is a lot of work on the relationship between P. vivax cases and climatic factors in China, with sometimes contradicting results. However, how climatic factors affect transmission rate of P. vivax in China is unknown. We used Anhui province as an example to analyze the recent transmission dynamics where two types of malaria have been reported with differing etiologies. We examined breakpoints of the P. vivax and P. falciparum malaria long term dynamics in the recent decade. For locally transmitted P. vivax malaria, we analyzed the transmission rate and its seasonality using the combined human and mosquitos SIR-SI model with time-varied mosquito biting rate. We identified the effects of meteorological factors on the seasonality in transmission rate using a GAM model. For the imported P. falciparum malaria, we analyzed the potential reason for the observed increase in cases. The breakpoints of P. vivax and P. falciparum dynamics happened in a same year, 2010. The seasonality in the transmission rate of P. vivax malaria was high (42.4%) and was linearly associated with temperature and nonlinearly with rainfall. The abrupt increase in imported P. falciparum cases after the breakpoint was significantly related to the increased annual Chinese investment in Africa. Under the conditions of the existing vectors of malaria, long-term trends in climatic factors, and increasing trend in migration to/from endemic areas and imported malaria cases, we should be cautious of the possibility of the reestablishment of malaria in regions where it has been eliminated or the establishment of other vector-borne diseases.

3.
BMJ Open ; 12(3): e053922, 2022 03 31.
Artigo em Inglês | MEDLINE | ID: mdl-35361642

RESUMO

OBJECTIVES: Malaria is a vector-borne disease that remains a serious public health problem due to its climatic sensitivity. Accurate prediction of malaria re-emergence is very important in taking corresponding effective measures. This study aims to investigate the impact of climatic factors on the re-emergence of malaria in mainland China. DESIGN: A modelling study. SETTING AND PARTICIPANTS: Monthly malaria cases for four Plasmodium species (P. falciparum, P. malariae, P. vivax and other Plasmodium) and monthly climate data were collected for 31 provinces; malaria cases from 2004 to 2016 were obtained from the Chinese centre for disease control and prevention and climate parameters from China meteorological data service centre. We conducted analyses at the aggregate level, and there was no involvement of confidential information. PRIMARY AND SECONDARY OUTCOME MEASURES: The long short-term memory sequence-to-sequence (LSTMSeq2Seq) deep neural network model was used to predict the re-emergence of malaria cases from 2004 to 2016, based on the influence of climatic factors. We trained and tested the extreme gradient boosting (XGBoost), gated recurrent unit, LSTM, LSTMSeq2Seq models using monthly malaria cases and corresponding meteorological data in 31 provinces of China. Then we compared the predictive performance of models using root mean squared error (RMSE) and mean absolute error evaluation measures. RESULTS: The proposed LSTMSeq2Seq model reduced the mean RMSE of the predictions by 19.05% to 33.93%, 18.4% to 33.59%, 17.6% to 26.67% and 13.28% to 21.34%, for P. falciparum, P. vivax, P. malariae, and other plasmodia, respectively, as compared with other candidate models. The LSTMSeq2Seq model achieved an average prediction accuracy of 87.3%. CONCLUSIONS: The LSTMSeq2Seq model significantly improved the prediction of malaria re-emergence based on the influence of climatic factors. Therefore, the LSTMSeq2Seq model can be effectively applied in the malaria re-emergence prediction.


Assuntos
Aprendizado Profundo , Malária Falciparum , Malária , China/epidemiologia , Mudança Climática , Humanos , Malária/epidemiologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA