Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
J Fluoresc ; 2024 Mar 08.
Artigo em Inglês | MEDLINE | ID: mdl-38457072

RESUMO

Herein, in this report we are introducing newly synthesized chalcone derivative, "(E)-1-phenyl-3-(4-((5-(((Z)-thiophen-2-ylmethylene)amino)-1,3,4-thiadiazol-2-yl)thio)phenyl)prop-2-en-1-one" (5), as a chemosensor to detect Fe2+ metal ions in HEPES buffer solution of pH 7.5. Spectroscopic techniques were used to confirm the synthesized sensor. To determine the chemical reactivity and molecular stability of the probe, a frontier molecular orbitals investigation was carried out. A molecular electrostatic potential map was investigated to know the binding site of 5 for metal ion coordination. The theoretical absorption and fluorescence emission properties were estimated and correlated with the experimental observations. The sensor showed excellent selectivity for Fe2+ compared to all other studied metal ions. The fluorescence binding studies were carried out by adding different amounts of Fe2+ ions for a fixed concentration of probe 5. The inclusion of Fe2+ ions resulted in a decrease in fluorescence intensity with a bathochromic shift of emission wavelength of 5 due to the 5-Fe2+ complexation. The binding affinity value for the probe was found to be 576.2 M-1 with the help of the Stern-Volmer plot. The Job's plot and mass spectra supported the 2:1 (5: Fe2+) stoichiometry of complex formation. The detection limit and limit of quantification of 5 for Fe2+ were calculated to be 4.79 × 10-5 M and 14.54 × 10-5 M. Further, in addition to this, the photophysical parameters such as fluorescence lifetime of 5 and 5-Fe2+ complex measured to be 0.1439 and 0.1574 ns. The quantum yield of 5 and 5-Fe2+ was found to be 0.0398 and 0.0376. All these experimental findings revealed that probe 5 has excellent selectivity and sensitivity for Fe2+ ions.

2.
Bioorg Chem ; 143: 107085, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38183681

RESUMO

A green catalyst WELPSA-catalyzed three-component condensation (Biginelli) process involving an aldehyde, barbituric/thiobarbituric/1,3-dimethylbarbituric acid, and urea/thiourea/guanidine hydrochloride in a single pot in presence of a green solvent for the production of DHPM have been presented. The catalyst is reusable and this methodology is scalable. By using the in vitro experiments, the antidiabetic potentiality of synthesized compounds that inhibit α-amylase along with α-glucosidase efficiencies was assessed. All the synthesized compounds except for 4a and 4e, showed the most significant inhibition for α-amylase and α-glucosidase activities. Among the synthesized DHPM compounds, 4c and 4b exhibited significant inhibition profiles compared to the standard antidiabetic drug acarbose. Furthermore, synthesized substances' energy-minimized structures, 3D structures, and DFT calculations were performed using Gaussian 09 software, hybrid models, and MM2 force approaches. Strong hydrogen bonds with amino acid residues Arg-672, Arg-600, Trp-613, Asp-404, Asp-282, and Asp-616 indicate that an α-glucosidase-inhibitory peptide may have hypoglycemic efficacy confirmed by the molecular docking study of the synthesized DHPM.


Assuntos
Inibidores de Glicosídeo Hidrolases , alfa-Glucosidases , Inibidores de Glicosídeo Hidrolases/química , Simulação de Acoplamento Molecular , alfa-Glucosidases/metabolismo , alfa-Amilases/metabolismo , Hipoglicemiantes/farmacologia , Hipoglicemiantes/química , Catálise
3.
Arch Pharm (Weinheim) ; 356(6): e2300008, 2023 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-36899497

RESUMO

The Biginelli reaction has received significant consideration in recent years due to its easily accessible aldehyde, urea/thiourea, and active methylene compounds. When it comes to pharmacological applications, the Biginelli reaction end-products, the 2-oxo-1,2,3,4-tetrahydropyrimidines, are vital in pharmacological applications. Due to the ease of carrying out the Biginelli reaction, it offers a number of exciting prospects in various fields. Catalysts, however, play an essential role in Biginelli's reaction. In the absence of a catalyst, it is difficult to form products with a good yield. Many catalysts have been used in search of efficientmethodologies, including biocatalysts, Brønsted/Lewis acids, heterogeneous catalysts, organocatalysts, and so on. Nanocatalysts are currently being applied in the Biginelli reaction to improve the environmental profile as well as speed up the reaction process. This review describes the catalytic role in the Biginelli reaction and pharmacological application of 2-oxo/thioxo-1,2,3,4-tetrahydropyrimidines. This study provides information that will facilitate the development of newer catalytic methods for the Biginelli reaction, by academics as well as industrialists. It also offers a broad scope for drug design strategies, which may enable the development of novel and highly effective bioactive molecules.


Assuntos
Aldeídos , Ureia , Estrutura Molecular , Relação Estrutura-Atividade , Catálise , Aldeídos/farmacologia
4.
Arch Pharm (Weinheim) ; 356(3): e2200444, 2023 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-36461683

RESUMO

In the present investigation, we devolved and synthesized a new series of pyrazole-embedded thiazolidin-4-one derivatives (9a-p) with the goal to produce promising antitubercular leads. The in vitro antimycobacterial activity of the synthesized compounds was tested against replicating and nonreplicating Mtb H37Rv strains. With MIC ranging from 3.03 to 22.55 µg/ml, five compounds (9a, 9c, 9d, 9e, and 9f) emerged as promising antitubercular agents. The active molecules were nontoxic to normal Vero cells. All the synthesized compounds were evaluated for in vitro anti-inflammatory studies. Compounds 9a, 9b, 9c, 9h, and 9i exhibited excellent anti-inflammatory efficacy. Docking study was performed to understand the binding pattern of the significantly active compound 9a with 1P44.


Assuntos
Simulação de Dinâmica Molecular , Mycobacterium tuberculosis , Animais , Chlorocebus aethiops , Células Vero , Relação Estrutura-Atividade , Antituberculosos/farmacologia , Antituberculosos/química , Pirazóis/farmacologia , Simulação de Acoplamento Molecular , Estrutura Molecular , Testes de Sensibilidade Microbiana
5.
ACS Omega ; 5(39): 25228-25239, 2020 Oct 06.
Artigo em Inglês | MEDLINE | ID: mdl-33043201

RESUMO

A new class of compounds formed by the linkage of -C(O)-NH- with pyridine and thiazole moieties was designed, synthesized, and characterized by various spectral approaches. The newly characterized compounds were evaluated for their antimicrobial as well as anti-inflammatory properties. The in vitro anti-inflammatory activity of these compounds was evaluated by denaturation of the bovine serum albumin method and showed inhibition in the range of IC50 values-46.29-100.60 µg/mL. Among all the tested compounds, compound 5l has the highest IC50 value and compound 5g has the least IC50 value. On the other hand, antimicrobial results revealed that compound 5j showed the lowest MIC values and compound 5a has the highest MIC values. Furthermore, molecular docking of the active compounds demonstrated a better docking score and interacted well with the target protein. Physicochemical parameters of the titled compounds were found suitable in the reference range only. The in silico molecular docking study revealed their COX-inhibitory action. Compound 5j emerged as a significant bioactive molecule among the synthesized analogues.

6.
Arch Pharm (Weinheim) ; 353(12): e2000103, 2020 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-32893908

RESUMO

The aim of this study was to synthesize newer potent Schiff bases by condensing 2-amino-5-(2,4-dichlorophenyl)thiophene-3-carbonitrile and 1,3-disubstituted-1H-pyrazole-4-carbaldehydes, and to investigate their biological activity. The compounds were synthesized via Gewald synthesis and characterized by spectral data and elemental analyses. They were screened for their in vitro antibacterial and anti-inflammatory activities. The synthesized compounds were also evaluated for in vitro antitubercular activity against Mycobacterium tuberculosis H37Rv using the microplate Alamar Blue assay. Compounds 8b, 8c, 8f, 8g, 8k, 8n, and 8o showed promising antibacterial activity. The interactions between the substituted pyrazoles and bovine protein showed promising anti-inflammatory activity. The experimental results revealed compound 8a as a promising antitubercular agent. Hemolytic assays confirmed that the compounds are nontoxic, with percentage hemolysis ranging from 3.6 to 20.1, at a concentration of 1 mg/ml. The results suggest that the pyrazole ring and the substitution pattern on the heterocyclic moiety have an effect on the bioactivity.


Assuntos
Antibacterianos/farmacologia , Anti-Inflamatórios/farmacologia , Bactérias/efeitos dos fármacos , Pirazóis/farmacologia , Tiofenos/farmacologia , Antibacterianos/síntese química , Antibacterianos/toxicidade , Anti-Inflamatórios/síntese química , Anti-Inflamatórios/toxicidade , Antituberculosos/síntese química , Antituberculosos/farmacologia , Antituberculosos/toxicidade , Bactérias/crescimento & desenvolvimento , Desenho de Fármacos , Hemólise/efeitos dos fármacos , Humanos , Estrutura Molecular , Mycobacterium tuberculosis/efeitos dos fármacos , Mycobacterium tuberculosis/crescimento & desenvolvimento , Pirazóis/síntese química , Pirazóis/toxicidade , Bases de Schiff , Relação Estrutura-Atividade , Tiofenos/síntese química , Tiofenos/toxicidade
7.
Heliyon ; 5(8): e02233, 2019 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-31485504

RESUMO

2-Amino-5-(3-fluoro-4-methoxyphenyl)thiophene-3-carbonitrile have been synthesized from 1-(3-fluoro-4-methoxyphenyl)ethanone, malononitrile, a mild base and sulfur powder using Gewald synthesis technique and the intermediate was treated with 1,3-disubstituted pyrazole-4-carboxaldehyde to obtain the novel Schiff bases. 1,3-disubstituted pyrazole-4-carboxaldehyde derivatives have been synthesized by Vilsmeier-Haack reaction in the course of a multi-step reaction. The structure of novel compounds were established on the basis of their elemental analyses IR, 1H NMR, 13C NMR, and mass spectral data and then screened for their in vitro antimicrobial activity. Among them 5a, 5c, 5f and 5h showed excellent activity when compared to other derivatives. Remaining derivatives showed moderate activity.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA