Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Cancer Sci ; 108(9): 1793-1802, 2017 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-28643892

RESUMO

Osteosarcoma is the most common type of primary bone tumor, and novel therapeutic approaches for this disease are urgently required. To identify effective agents, we screened a panel of Food and Drug Administration (FDA)-approved drugs in AXT cells, our newly established mouse osteosarcoma line, and identified calcitriol as a candidate compound with therapeutic efficacy for this disease. Calcitriol inhibited cell proliferation in AXT cells by blocking cell cycle progression. From a mechanistic standpoint, calcitriol induced endoplasmic reticulum (ER) stress, which was potentially responsible for downregulation of cyclin D1, activation of p38 MAPK, and intracellular production of reactive oxygen species (ROS). Knockdown of Atf4 or Ddit3 restored cell viability after calcitriol treatment, indicating that the ER stress response was indeed responsible for the anti-proliferative effect in AXT cells. Notably, the ER stress response was induced to a lesser extent in human osteosarcoma than in AXT cells, consistent with the weaker suppressive effect on cell growth in the human cells. Thus, the magnitude of ER stress induced by calcitriol might be an index of its anti-osteosarcoma effect. Although mice treated with calcitriol exhibited weight loss and elevated serum calcium levels, a single dose was sufficient to decrease osteosarcoma tumor size in vivo. Our findings suggest that calcitriol holds therapeutic potential for treatment of osteosarcoma, assuming that techniques to diminish its toxicity could be established. In addition, our results show that calcitriol could still be safely administered to osteosarcoma patients for its original purposes, including treatment of osteoporosis.


Assuntos
Antineoplásicos/administração & dosagem , Neoplasias Ósseas/tratamento farmacológico , Calcitriol/administração & dosagem , Retículo Endoplasmático/metabolismo , Osteossarcoma/tratamento farmacológico , Animais , Neoplasias Ósseas/metabolismo , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Retículo Endoplasmático/efeitos dos fármacos , Estresse do Retículo Endoplasmático/efeitos dos fármacos , Feminino , Humanos , Injeções Intraperitoneais , Camundongos Endogâmicos C57BL , Osteossarcoma/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Ensaios Antitumorais Modelo de Xenoenxerto
2.
Mol Cancer Ther ; 16(1): 182-192, 2017 01.
Artigo em Inglês | MEDLINE | ID: mdl-27799356

RESUMO

Osteosarcoma is the most common type of primary bone tumor, novel therapeutic agents for which are urgently needed. To identify such agents, we screened a panel of approved drugs with a mouse model of osteosarcoma. The screen identified simvastatin, which inhibited the proliferation and migration of osteosarcoma cells in vitro Simvastatin also induced apoptosis in osteosarcoma cells in a manner dependent on inhibition of the mevalonate biosynthetic pathway. It also disrupted the function of the small GTPase RhoA and induced activation of AMP-activated protein kinase (AMPK) and p38 MAPK, with AMPK functioning upstream of p38 MAPK. Inhibitors of AMPK or p38 MAPK attenuated the induction of apoptosis by simvastatin, whereas metformin enhanced this effect of simvastatin by further activation of AMPK. Although treatment with simvastatin alone did not inhibit osteosarcoma tumor growth in vivo, its combination with a fat-free diet induced a significant antitumor effect that was enhanced further by metformin administration. Our findings suggest that simvastatin induces apoptosis in osteosarcoma cells via activation of AMPK and p38 MAPK, and that, in combination with other approaches, it holds therapeutic potential for osteosarcoma. Mol Cancer Ther; 16(1); 182-92. ©2016 AACR.


Assuntos
Apoptose/efeitos dos fármacos , Neoplasias Ósseas/metabolismo , Osteossarcoma/metabolismo , Transdução de Sinais/efeitos dos fármacos , Sinvastatina/farmacologia , Proteínas Quinases Ativadas por AMP/metabolismo , Animais , Neoplasias Ósseas/genética , Linhagem Celular Tumoral , Movimento Celular/efeitos dos fármacos , Proliferação de Células/efeitos dos fármacos , Modelos Animais de Doenças , Regulação Neoplásica da Expressão Gênica , Humanos , Metformina/farmacologia , Camundongos , Osteossarcoma/genética , Ensaios Antitumorais Modelo de Xenoenxerto , Proteínas Quinases p38 Ativadas por Mitógeno/metabolismo , Proteína rhoA de Ligação ao GTP/genética , Proteína rhoA de Ligação ao GTP/metabolismo
3.
Cancer Res ; 74(22): 6531-41, 2014 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-25273088

RESUMO

Osteosarcoma is a malignant bone tumor in children and adolescents characterized by intrinsic therapeutic resistance. The IGF2 is expressed at elevated levels in osteosarcoma after treatment with chemotherapy, prompting an examination of its functional contributions to resistance. We found that continuous exposure to IGF2 or insulin in the absence of serum created a dormant growth state in osteosarcoma cells that conferred resistance to various chemotherapeutic drugs in vitro. Mechanistic investigations revealed that this dormant state correlated with downregulation of downstream signaling by the IGF1 receptor, heightened cell survival, enhanced autophagy, and the presence of extracellular glutamine. Notably, inhibiting autophagy or depleting glutamine was sufficient to increase chemotherapeutic sensitivity in osteosarcoma xenografts in mice. Clinically, we confirmed that IGF expression levels were elevated in human osteosarcoma specimens from patients who received chemotherapy. Together, our results suggest that activation of IGF or insulin signaling preserves the survival of osteosarcoma cells under chemotherapeutic stress, providing a drug-resistant population that may engender minimal residual disease. Attenuating this survival mechanism may help overcome therapeutic resistance in osteosarcoma.


Assuntos
Autofagia/fisiologia , Neoplasias Ósseas/tratamento farmacológico , Fator de Crescimento Insulin-Like II/farmacologia , Osteossarcoma/tratamento farmacológico , Adolescente , Adulto , Animais , Neoplasias Ósseas/patologia , Linhagem Celular Tumoral , Sobrevivência Celular , Criança , Citoproteção , Resistencia a Medicamentos Antineoplásicos , Feminino , Glutamina/metabolismo , Humanos , Insulina/farmacologia , Fator de Crescimento Insulin-Like II/análise , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Osteossarcoma/patologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA