RESUMO
Spatial barcoding-based transcriptomic (ST) data require deconvolution for cellular-level downstream analysis. Here we present SDePER, a hybrid machine learning and regression method to deconvolve ST data using reference single-cell RNA sequencing (scRNA-seq) data. SDePER tackles platform effects between ST and scRNA-seq data, ensuring a linear relationship between them while addressing sparsity and spatial correlations in cell types across capture spots. SDePER estimates cell-type proportions, enabling enhanced resolution tissue mapping by imputing cell-type compositions and gene expressions at unmeasured locations. Applications to simulated data and four real datasets showed SDePER's superior accuracy and robustness over existing methods.
Assuntos
Aprendizado de Máquina , Análise de Célula Única , Transcriptoma , Análise de Célula Única/métodos , Humanos , Perfilação da Expressão Gênica/métodos , Análise de Sequência de RNA/métodos , Software , Animais , Análise de Regressão , RNA-Seq/métodosRESUMO
RATIONALE: Idiopathic pulmonary fibrosis (IPF) is a fatal lung disease for which current treatment options only slow clinical progression. Previously, we identified a subset of patients with IPF with an accelerated disease course associated with fibroblast expression of Toll-Like Receptor 9 (TLR9) mediated by interactions with its ligand mitochondrial DNA (mtDNA). OBJECTIVES: We aimed to show that TLR9 activation induces fibroproliferative responses that are abrogated by its antagonism by using two commercially-available indirect inhibitors and a proprietary, selective direct small molecule inhibitor. METHODS: We employed two independent cohorts of patients with IPF, multiple in vitro fibroblast cell culture platforms, an in vivo mouse model, and an ex vivo human precision cut lung slices system to investigate the clinical and biologic significance of TLR9 in this disease. MEASUREMENTS AND MAIN RESULTS: In two independent IPF cohorts, plasma mtDNA activates TLR9 in a manner associated with the expression of MCP-1, IL-6, TNFα, and IP-10 and worsened transplant-free survival. Our cell culture platform showed that TLR9 mediates fibroblast activation via TGFß1 and stiff substrates, and that its antagonism, particularly direct inhibition, ameliorates this process, including production of these TLR9 associated pharmacodynamic endpoints. We further demonstrated that direct TLR9 inhibition mitigates these fibroproliferative responses in our in vivo and ex vivo models of pulmonary fibrosis. CONCLUSIONS: In this novel study, we found that direct TLR9 inhibition mitigates fibroproliferative responses in preclinical models of pulmonary fibrosis. Our work demonstrates the therapeutic potential of direct TLR9 antagonism in IPF and related fibrotic lung diseases.
RESUMO
Rationale: The association between immune-cell-specific transcriptomic profiles and Idiopathic Pulmonary Fibrosis (IPF) mortality is unknown. Objectives: To determine immune-cell-specific transcriptomic profiles associated with IPF mortality. Methods: We profiled peripheral blood mononuclear cells (PBMC) in 18 participants [University of South Florida: IPF, COVID-19, post-COVID-19 Interstitial Lung Disease (Post-COVID-19 ILD), controls] by single-cell RNA sequencing (scRNA-seq) and identified 16 immune-cell-specific transcriptomic profiles. The Scoring Algorithm of Molecular Subphenotypes (SAMS) was used to calculate Up-scores based on these 16 gene profiles. Their association with outcomes was investigated in peripheral blood, Bronchoalveolar Lavage (BAL) and lung tissue of N=416 IPF patients from six cohorts. Findings were validated in an independent IPF, PBMC scRNA-seq dataset (N=38). Measurements and main results: Cox-regression models demonstrated that 230 genes from CD14 + CD163 - HLA-DR low circulating monocytes predicted IPF mortality [Pittsburgh (p=0.02), Chicago (p=0.003)]. PBMC proportions of CD14 + CD163 - HLA-DR low monocytes were higher in progressive versus stable IPF (Yale, 0.13±0.05 versus 0.09±0.05, p=0.034). Receiving operating characteristic identified a 230 gene, Up-score >41.84 (Pittsburgh) predictive of mortality in Chicago (HR: 6.58, 95%CI: 2.15-20.13, p=0.001) and in pooled analysis of BAL cohorts (HR: 2.20, 95%CI: 1.44-3.37, p=0.0003). High-risk patients had decreased expression of the T-cell co-stimulatory genes CD28 , ICOS , ITK and LCK (Pittsburgh and Chicago, p<0.01). 230 gene-up-scores negatively correlated with Forced Vital Capacity (FVC) in IPF lung tissues (LGRC, rho=-0.2, p=0.02). Results were replicated using a subset of 13 genes from the 230-gene signature (pooled PBMC cohorts - HR: 5.34, 95%CI: 2.83-10.06, p<0.0001). Conclusions: The transcriptome of CD14 + CD163 - HLA-DR low monocytes is associated with increased IPF mortality.
RESUMO
Matrix stiffening by lysyl oxidase-like 2 (LOXL2)-mediated collagen cross-linking is proposed as a core feedforward mechanism that promotes fibrogenesis. Failure in clinical trials of simtuzumab (the humanized version of AB0023, a monoclonal antibody against human LOXL2) suggested that targeting LOXL2 may not have disease relevance; however, target engagement was not directly evaluated. We compare the spatial transcriptome of active human lung fibrogenesis sites with different human cell culture models to identify a disease-relevant model. Within the selected model, we then evaluate AB0023, identifying that it does not inhibit collagen cross-linking or reduce tissue stiffness, nor does it inhibit LOXL2 catalytic activity. In contrast, it does potently inhibit angiogenesis consistent with an alternative, non-enzymatic mechanism of action. Thus, AB0023 is anti-angiogenic but does not inhibit LOXL2 catalytic activity, collagen cross-linking, or tissue stiffening. These findings have implications for the interpretation of the lack of efficacy of simtuzumab in clinical trials of fibrotic diseases.
Assuntos
Aminoácido Oxirredutases , Fibrose , Transcriptoma , Humanos , Aminoácido Oxirredutases/genética , Aminoácido Oxirredutases/metabolismo , Transcriptoma/genética , Colágeno/metabolismo , Biomimética/métodos , Anticorpos Monoclonais Humanizados/farmacologia , Anticorpos Monoclonais Humanizados/uso terapêutico , Modelos BiológicosRESUMO
INTRODUCTION: The pathogenesis of sarcoidosis involves tissue remodelling mediated by the accumulation of abnormal extracellular matrix, which is partly the result of an imbalance in collagen synthesis, cross-linking and degradation. During this process, collagen fragments or neoepitopes, are released into the circulation. The significance of these circulating collagen neoepitopes in sarcoidosis remains unknown. METHODS: We employed plasma samples from patients with sarcoidosis enrolled in A Case Control Etiologic Study of Sarcoidosis (ACCESS) and Genomic Research in Alpha-1 Antitrypsin Deficiency and Sarcoidosis (GRADS), and healthy control patients recruited from the Yale community. Plasma concentrations of type III and VI collagen degradation (C3M and C6M) and formation (PRO-C3 and PRO-C6) were quantified via neoepitope-specific competitive ELISA, and statistical associations were sought with clinical phenotypes. RESULTS: Relative to healthy controls, the plasma of both sarcoidosis cohorts was enriched for C3M and C6M, irrespective of corticosteroid use and disease duration. While circulating collagen neoepitopes were independent of Scadding stage, there was a significant association between multiorgan disease and PRO-C3, PRO-C6 and C3M in the ACCESS cohort; PRO-C3 and C6M displayed this property in GRADS. These findings were unrelated to plasma levels of interleukin-4 (IL-4), IL-5, IL-6, IL-9, IL-10 and IL-13. Moreover, PRO-C3 was associated with dermatological disease in both cohorts. DISCUSSION: In two well-characterised sarcoidosis cohorts, we discovered that the plasma is enriched for neoepitopes of collagen degradation (C3M and C6M). In multiorgan disease, there was an association with circulating neoepitopes of type III formation (PRO-C3), perhaps mediated by dermatological sarcoidosis. Further investigation in this arena has the potential to foster new insights into the pathogenic mechanisms of this complex disease.
RESUMO
Continued improvements in the treatment of pulmonary infections have paradoxically resulted in a growing challenge of individuals with postinfectious pulmonary complications (PIPCs). PIPCs have been long recognized after tuberculosis, but recent experiences such as the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) pandemic have underscored the importance of PIPCs following other lower respiratory tract infections. Independent of the causative pathogen, most available studies of pulmonary infections focus on short-term outcomes rather than long-term morbidity among survivors. In this document, we establish a conceptual scope for PIPCs with discussion of globally significant pulmonary pathogens and an examination of how these pathogens can damage different components of the lung, resulting in a spectrum of PIPCs. We also review potential mechanisms for the transition from acute infection to PIPC, including the interplay between pathogen-mediated injury and aberrant host responses, which together result in PIPCs. Finally, we identify cross-cutting research priorities for the field to facilitate future studies to establish the incidence of PIPCs, define common mechanisms, identify therapeutic strategies, and ultimately reduce the burden of morbidity in survivors of pulmonary infections.
Assuntos
Pesquisa Biomédica , Pneumopatias , Humanos , COVID-19/epidemiologia , Pneumopatias/terapia , Pneumopatias/etiologia , Infecções Respiratórias/epidemiologia , SARS-CoV-2 , Sociedades Médicas , Estados Unidos/epidemiologiaRESUMO
Precision management of fibrotic lung diseases is challenging due to their diverse clinical trajectories and lack of reliable biomarkers for risk stratification and therapeutic monitoring. Here, we validated the accuracy of CMKLR1 as an imaging biomarker of the lung inflammation-fibrosis axis. By analyzing single-cell RNA sequencing datasets, we demonstrated CMKLR1 expression as a transient signature of monocyte-derived macrophages (MDMφ) enriched in patients with idiopathic pulmonary fibrosis (IPF). Consistently, we identified MDMφ as the major driver of the uptake of CMKLR1-targeting peptides in a murine model of bleomycin-induced lung fibrosis. Furthermore, CMKLR1-targeted positron emission tomography in the murine model enabled quantification and spatial mapping of inflamed lung regions infiltrated by CMKLR1-expressing macrophages and emerged as a robust predictor of subsequent lung fibrosis. Last, high CMKLR1 expression by bronchoalveolar lavage cells identified an inflammatory endotype of IPF with poor survival. Our investigation supports the potential of CMKLR1 as an imaging biomarker for endotyping and risk stratification of fibrotic lung diseases.
Assuntos
Fibrose Pulmonar Idiopática , Pneumonia , Animais , Humanos , Camundongos , Fibrose Pulmonar Idiopática/diagnóstico por imagem , Fibrose Pulmonar Idiopática/patologia , Fibrose Pulmonar Idiopática/metabolismo , Fibrose Pulmonar Idiopática/induzido quimicamente , Pneumonia/metabolismo , Pneumonia/diagnóstico por imagem , Pneumonia/patologia , Macrófagos/metabolismo , Macrófagos/patologia , Biomarcadores , Modelos Animais de Doenças , Tomografia por Emissão de Pósitrons/métodos , Fibrose Pulmonar/diagnóstico por imagem , Fibrose Pulmonar/patologia , Fibrose Pulmonar/metabolismo , Fibrose Pulmonar/induzido quimicamente , Bleomicina , Pulmão/patologia , Pulmão/diagnóstico por imagem , Pulmão/metabolismo , Masculino , Feminino , Camundongos Endogâmicos C57BLRESUMO
Rationale: Fibrotic hypersensitivity pneumonitis is a debilitating interstitial lung disease driven by incompletely understood immune mechanisms. Objectives: To elucidate immune aberrations in fibrotic hypersensitivity pneumonitis in single-cell resolution. Methods: Single-cell 5' RNA sequencing was conducted on peripheral blood mononuclear cells and bronchoalveolar lavage cells obtained from 45 patients with fibrotic hypersensitivity pneumonitis, 63 idiopathic pulmonary fibrosis, 4 non-fibrotic hypersensitivity pneumonitis, and 36 healthy controls in the United States and Mexico. Analyses included differential gene expression (Seurat), transcription factor activity imputation (DoRothEA-VIPER), and trajectory analyses (Monocle3/Velocyto-scVelo-CellRank). Measurements and Main Results: Overall, 501,534 peripheral blood mononuclear cells from 110 patients and controls and 88,336 bronchoalveolar lavage cells from 19 patients were profiled. Compared to controls, fibrotic hypersensitivity pneumonitis has elevated classical monocytes (adjusted-p=2.5e-3) and are enriched in CCL3hi/CCL4hi and S100Ahi classical monocytes (adjusted-p<2.2e-16). Trajectory analyses demonstrate that S100Ahi classical monocytes differentiate into SPP1hi lung macrophages associated with fibrosis. Compared to both controls and idiopathic pulmonary fibrosis, fibrotic hypersensitivity pneumonitis patient cells are significantly enriched in GZMhi cytotoxic T cells. These cells exhibit transcription factor activities indicative of TGFß and TNFα/NFκB pathways. These results are publicly available at https://ildimmunecellatlas.org. Conclusions: Single-cell transcriptomics of fibrotic hypersensitivity pneumonitis patients uncovered novel immune perturbations, including previously undescribed increases in GZMhi cytotoxic CD4+ and CD8+ T cells - reflecting this disease's unique inflammatory T-cell driven nature - as well as increased S100Ahi and CCL3hi/CCL4hi classical monocytes also observed in idiopathic pulmonary fibrosis. Both cell populations may guide the development of new biomarkers and therapeutic interventions.
RESUMO
BACKGROUND: Sarcoidosis staging primarily has relied on the Scadding chest radiographic system, although chest CT imaging is finding increased clinical use. RESEARCH QUESTION: Whether standardized chest CT scan assessment provides additional understanding of lung function beyond Scadding stage and demographics is unknown and the focus of this study. STUDY DESIGN AND METHODS: We used National Heart, Lung, and Blood Institute study Genomics Research in Alpha-1 Antitrypsin Deficiency and Sarcoidosis (GRADS) cases of sarcoidosis (n = 351) with Scadding stage and chest CT scans obtained in a standardized manner. One chest radiologist scored all CT scans with a visual scoring system, with a subset read by another chest radiologist. We compared demographic features, Scadding stage and CT scan findings, and the correlation between these measures. Associations between spirometry and diffusing capacity of the lungs for carbon monoxide (Dlco) results and CT scan findings and Scadding stage were determined using regression analysis (n = 318). Agreement between readers was evaluated using Cohen's κ value. RESULTS: CT scan features were inconsistent with Scadding stage in approximately 40% of cases. Most CT scan features assessed on visual scoring were associated negatively with lung function. Associations persisted for FEV1 and Dlco when adjusting for Scadding stage, although some CT scan feature associations with FVC became insignificant. Scadding stage was associated primarily with FEV1, and inclusion of CT scan features reduced significance in association between Scadding stage and lung function. Multivariable regression modeling to identify radiologic measures explaining lung function included Scadding stage for FEV1 and FEV1 to FVC ratio (P < .05) and marginally for Dlco (P < .15). Combinations of CT scan measures accounted for Scadding stage for FVC. Correlations among Scadding stage and CT scan features were noted. Agreement between readers was poor to moderate for presence or absence of CT scan features and poor for degree and location of abnormality. INTERPRETATION: In this study, CT scan features explained additional variability in lung function beyond Scadding stage, with some CT scan features obviating the associations between lung function and Scadding stage. Whether CT scan features, phenotypes, or endotypes could be useful for treating patients with sarcoidosis needs more study.
RESUMO
Introduction: Chronic rejection is a major complication post-transplantation. Within lung transplantation, chronic rejection was considered as airway centred. Chronic Lung Allograft Dysfunction (CLAD), defined to cover all late chronic complications, makes it more difficult to understand chronic rejection from an immunological perspective. This study investigated the true nature, timing and location of chronic rejection as a whole, within mouse lung transplantation. Methods: 40 mice underwent an orthotopic left lung transplantation, were sacrificed at day 70 and evaluated by histology and in vivo µCT. For timing and location of rejection, extra grafts were sacrificed at day 7, 35, 56 and investigated by ex vivo µCT or single cell RNA (scRNA) profiling. Results: Chronic rejection originated as innate inflammation around small arteries evolving toward adaptive organization with subsequent end-arterial fibrosis and obliterans. Subsequently, venous and pleural infiltration appeared, followed by airway related bronchiolar folding and rarely bronchiolitis obliterans was observed. Ex vivo µCT and scRNA profiling validated the time, location and sequence of events with endothelial destruction and activation as primary onset. Conclusion: Against the current belief, chronic rejection in lung transplantation may start as an arterial response, followed by responses in venules, pleura, and, only in the late stage, bronchioles, as may be seen in some but not all patients with CLAD.
Assuntos
Rejeição de Enxerto , Transplante de Pulmão , Animais , Transplante de Pulmão/efeitos adversos , Rejeição de Enxerto/imunologia , Camundongos , Doença Crônica , Modelos Animais de Doenças , Camundongos Endogâmicos C57BL , Pulmão/patologia , Pulmão/imunologia , Masculino , Bronquiolite Obliterante/etiologia , Bronquiolite Obliterante/imunologia , Bronquiolite Obliterante/patologiaRESUMO
Rationale: Changes in peripheral blood cell populations have been observed, but not detailed, at single-cell resolution in idiopathic pulmonary fibrosis (IPF). Objectives: We sought to provide an atlas of the changes in the peripheral immune system in stable and progressive IPF. Methods: Peripheral blood mononuclear cells (PBMCs) from patients with IPF and control subjects were profiled using 10× chromium 5' single-cell RNA sequencing. Flow cytometry was used for validation. Protein concentrations of regulatory T cells (Tregs) and monocyte chemoattractants were measured in plasma and lung homogenates from patients with IPF and control subjects. Measurements and Main Results: Thirty-eight PBMC samples from 25 patients with IPF and 13 matched control subjects yielded 149,564 cells that segregated into 23 subpopulations. Classical monocytes were increased in patients with progressive and stable IPF compared with control subjects (32.1%, 25.2%, and 17.9%, respectively; P < 0.05). Total lymphocytes were decreased in patients with IPF versus control subjects and in progressive versus stable IPF (52.6% vs. 62.6%, P = 0.035). Tregs were increased in progressive versus stable IPF (1.8% vs. 1.1% of all PBMCs, P = 0.007), although not different than controls, and may be associated with decreased survival (P = 0.009 in Kaplan-Meier analysis; and P = 0.069 after adjusting for age, sex, and baseline FVC). Flow cytometry analysis confirmed this finding in an independent cohort of patients with IPF. The fraction of Tregs out of all T cells was also increased in two cohorts of lung single-cell RNA sequencing. CCL22 and CCL18, ligands for CCR4 and CCR8 Treg chemotaxis receptors, were increased in IPF. Conclusions: The single-cell atlas of the peripheral immune system in IPF reveals an outcome-predictive increase in classical monocytes and Tregs, as well as evidence for a lung-blood immune recruitment axis involving CCL7 (for classical monocytes) and CCL18/CCL22 (for Tregs).
Assuntos
Fibrose Pulmonar Idiopática , Leucócitos Mononucleares , Análise de Célula Única , Linfócitos T Reguladores , Humanos , Fibrose Pulmonar Idiopática/imunologia , Masculino , Feminino , Pessoa de Meia-Idade , Idoso , Análise de Célula Única/métodos , Linfócitos T Reguladores/imunologia , Leucócitos Mononucleares/imunologia , Progressão da Doença , Estudos de Casos e Controles , Citometria de FluxoRESUMO
Idiopathic pulmonary fibrosis (IPF) is characterized by progressive scarring and loss of lung function. With limited treatment options, patients succumb to the disease within 2-5 years. The molecular pathogenesis of IPF regarding the immunologic changes that occur is poorly understood. We characterize a role for non-canonical aryl-hydrocarbon receptor signaling (ncAHR) in dendritic cells (DCs) that leads to production of IL-6 and IL-17, promoting fibrosis. TLR9 signaling in myofibroblasts is shown to regulate production of TDO2 which converts tryptophan into the endogenous AHR ligand kynurenine. Mice with augmented ncAHR signaling were created by crossing floxed AHR exon-2 deletion mice (AHR Δex2 ) with mice harboring a CD11c-Cre. Bleomycin was used to study fibrotic pathogenesis. Isolated CD11c+ cells and primary fibroblasts were treated ex-vivo with relevant TLR agonists and AHR modulating compounds to study how AHR signaling influenced inflammatory cytokine production. Human datasets were also interrogated. Inhibition of all AHR signaling rescued fibrosis, however, AHR Δex2 mice treated with bleomycin developed more fibrosis and DCs from these mice were hyperinflammatory and profibrotic upon adoptive transfer. Treatment of fibrotic fibroblasts with TLR9 agonist increased expression of TDO2. Study of human samples corroborate the relevance of these findings in IPF patients. We also, for the first time, identify that AHR exon-2 floxed mice retain capacity for ncAHR signaling.
RESUMO
Alveolarization ensures sufficient lung surface area for gas exchange, and during bulk alveolarization in mice (postnatal day [P] 4.5-14.5), alpha-smooth muscle actin (SMA)+ myofibroblasts accumulate, secrete elastin, and lay down alveolar septum. Herein, we delineate the dynamics of the lineage of early postnatal SMA+ myofibroblasts during and after bulk alveolarization and in response to lung injury. SMA+ lung myofibroblasts first appear at â¼ P2.5 and proliferate robustly. Lineage tracing shows that, at P14.5 and over the next few days, the vast majority of SMA+ myofibroblasts downregulate smooth muscle cell markers and undergo apoptosis. Of note, â¼8% of these dedifferentiated cells and another â¼1% of SMA+ myofibroblasts persist to adulthood. Single cell RNA sequencing analysis of the persistent SMA- cells and SMA+ myofibroblasts in the adult lung reveals distinct gene expression profiles. For instance, dedifferentiated SMA- cells exhibit higher levels of tissue remodeling genes. Most interestingly, these dedifferentiated early postnatal myofibroblasts re-express SMA upon exposure of the adult lung to hypoxia or the pro-fibrotic drug bleomycin. However, unlike during alveolarization, these cells that re-express SMA do not proliferate with hypoxia. In sum, dedifferentiated early postnatal myofibroblasts are a previously undescribed cell type in the adult lung and redifferentiate in response to injury.
RESUMO
BACKGROUND: Fibrotic interstitial lung diseases (fILDs) are a heterogeneous group of lung diseases associated with significant morbidity and mortality. Despite a large increase in the number of clinical trials in the last 10 years, current regulatory-approved management approaches are limited to two therapies that prevent the progression of fibrosis. The drug development pipeline is long and there is an urgent need to accelerate this process. This manuscript introduces the concept and design of an innovative research approach to drug development in fILD: a global Randomised Embedded Multifactorial Adaptive Platform in fILD (REMAP-ILD). METHODS: Description of the REMAP-ILD concept and design: the specific terminology, design characteristics (multifactorial, adaptive features, statistical approach), target population, interventions, outcomes, mission and values, and organisational structure. RESULTS: The target population will be adult patients with fILD, and the primary outcome will be a disease progression model incorporating forced vital capacity and mortality over 12 months. Responsive adaptive randomisation, prespecified thresholds for success and futility will be used to assess the effectiveness and safety of interventions. REMAP-ILD embraces the core values of diversity, equity, and inclusion for patients and researchers, and prioritises an open-science approach to data sharing and dissemination of results. CONCLUSION: By using an innovative and efficient adaptive multi-interventional trial platform design, we aim to accelerate and improve care for patients with fILD. Through worldwide collaboration, novel analytical methodology and pragmatic trial delivery, REMAP-ILD aims to overcome major limitations associated with conventional randomised controlled trial approaches to rapidly improve the care of people living with fILD.
Assuntos
Doenças Pulmonares Intersticiais , Humanos , Doenças Pulmonares Intersticiais/terapia , Progressão da Doença , Projetos de Pesquisa , Ensaios Clínicos Controlados Aleatórios como AssuntoRESUMO
Excessive or persistent inflammation may have detrimental effects on lung structure and function. Currently, our understanding of conserved host mechanisms that control the inflammatory response remains incompletely understood. In this study, we investigated the role of type I interferon signaling in the inflammatory response against diverse clinically relevant stimuli. Using mice deficient in type I interferon signaling (IFNAR1-/-), we demonstrate that the absence of interferon signaling resulted in a robust and persistent inflammatory response against Pseudomonas aeruginosa, lipopolysaccharide, and chemotherapeutic agent bleomycin. The elevated inflammatory response in IFNAR1-/- mice was manifested as elevated myeloid cells, such as macrophages and neutrophils, in the bronchoalveolar lavage. The inflammatory cell response in the IFNAR1-/- mice persisted to 14 days and there is impaired recovery and fibrotic remodeling of the lung in IFNAR1-/- mice after bleomycin injury. In the Pseudomonas infection model, the elevated inflammatory cell response led to improved bacterial clearance in IFNAR1-/- mice, although there was similar lung injury and survival. We performed RNA sequencing of lung tissue in wild-type and IFNAR1-/- mice after LPS and bleomycin injury. Our unbiased analysis identified differentially expressed genes between IFNAR1-/- and wild-type mice, including previously unknown regulation of nucleotide-binding oligomerization domain (NOD)-like receptor signaling, retinoic acid-inducible gene-I (RIG-I) signaling, and necroptosis pathway by type I interferon signaling in both models. These data provide novel insights into the conserved anti-inflammatory mechanisms of the type I interferon signaling.NEW & NOTEWORTHY Type I interferons are known for their antiviral activities. In this study, we demonstrate a conserved anti-inflammatory role of type I interferon signaling against diverse stimuli in the lung. We show that exacerbated inflammatory response in the absence of type I interferon signaling has both acute and chronic consequences in the lung including structural changes.
Assuntos
Interferon Tipo I , Pulmão , Camundongos Endogâmicos C57BL , Camundongos Knockout , Receptor de Interferon alfa e beta , Transdução de Sinais , Animais , Interferon Tipo I/metabolismo , Pulmão/metabolismo , Pulmão/imunologia , Pulmão/patologia , Receptor de Interferon alfa e beta/genética , Receptor de Interferon alfa e beta/metabolismo , Camundongos , Bleomicina , Pseudomonas aeruginosa , Lipopolissacarídeos/farmacologia , Infecções por Pseudomonas/imunologia , Infecções por Pseudomonas/metabolismo , Infecções por Pseudomonas/patologia , Infecções por Pseudomonas/microbiologia , Inflamação/metabolismo , Inflamação/patologia , Inflamação/imunologia , MasculinoRESUMO
Introduction: Idiopathic pulmonary fibrosis (IPF) is a chronic interstitial pneumonia marked by progressive lung fibrosis and a poor prognosis. Recent studies have highlighted the potential role of infection in the pathogenesis of IPF, and a prior association of the HLA-DQB1 gene with idiopathic fibrotic interstitial pneumonia (including IPF) has been reported. Owing to the important role that the human leukocyte antigen (HLA) region plays in the immune response, here we evaluated if HLA genetic variation was associated specifically with IPF risk. Methods: We performed a meta-analysis of associations of the HLA region with IPF risk in individuals of European ancestry from seven independent case-control studies of IPF (comprising 5159 cases and 27 459 controls, including a prior study of fibrotic interstitial pneumonia). Single nucleotide polymorphisms, classical HLA alleles and amino acids were analysed and signals meeting a region-wide association threshold of p<4.5×10-4 and a posterior probability of replication >90% were considered significant. We sought to replicate the previously reported HLA-DQB1 association in the subset of studies independent of the original report. Results: The meta-analysis of all seven studies identified four significant independent single nucleotide polymorphisms associated with IPF risk. However, none met the posterior probability for replication criterion. The HLA-DQB1 association was not replicated in the independent IPF studies. Conclusion: Variation in the HLA region was not consistently associated with risk in studies of IPF. However, this does not preclude the possibility that other genomic regions linked to the immune response may be involved in the aetiology of IPF.
RESUMO
Tissue repair requires a highly coordinated cellular response to injury. In the lung, alveolar type 2 cells (AT2s) act as stem cells to replenish both themselves and alveolar type 1 cells (AT1s); however, the complex orchestration of stem cell activity after injury is poorly understood. Here, we establish longitudinal imaging of AT2s in murine intact tissues ex vivo and in vivo in order to track their dynamic behavior over time. We discover that a large fraction of AT2s become motile following injury and provide direct evidence for their migration between alveolar units. High-resolution morphokinetic mapping of AT2s further uncovers the emergence of distinct motile phenotypes. Inhibition of AT2 migration via genetic depletion of ArpC3 leads to impaired regeneration of AT2s and AT1s in vivo. Together, our results establish a requirement for stem cell migration between alveolar units and identify properties of stem cell motility at high cellular resolution.
Assuntos
Células Epiteliais Alveolares , Pulmão , Camundongos , Animais , Pulmão/fisiologia , Células Epiteliais Alveolares/metabolismo , Células-Tronco/metabolismo , Movimento Celular , Diferenciação Celular/fisiologiaRESUMO
Deciphering cell-type heterogeneity is crucial for systematically understanding tissue homeostasis and its dysregulation in diseases. Computational deconvolution is an efficient approach for estimating cell-type abundances from a variety of omics data. Despite substantial methodological progress in computational deconvolution in recent years, challenges are still outstanding. Here we enlist four important challenges related to computational deconvolution: the quality of the reference data, generation of ground truth data, limitations of computational methodologies, and benchmarking design and implementation. Finally, we make recommendations on reference data generation, new directions of computational methodologies, and strategies to promote rigorous benchmarking.
Assuntos
Biologia Computacional , Genômica , Biologia Computacional/métodos , BenchmarkingRESUMO
Tissue homeostasis is controlled by cellular circuits governing cell growth, organization, and differentation. In this study we identify previously undescribed cell-to-cell communication that mediates information flow from mechanosensitive pleural mesothelial cells to alveolar-resident stem-like tuft cells in the lung. We find mesothelial cells to express a combination of mechanotransduction genes and lineage-restricted ligands which makes them uniquely capable of responding to tissue tension and producing paracrine cues acting on parenchymal populations. In parallel, we describe a large population of stem-like alveolar tuft cells that express the endodermal stem cell markers Sox9 and Lgr5 and a receptor profile making them uniquely sensitive to cues produced by pleural Mesothelium. We hypothesized that crosstalk from mesothelial cells to alveolar tuft cells might be central to the regulation of post-penumonectomy lung regeneration. Following pneumonectomy, we find that mesothelial cells display radically altered phenotype and ligand expression, in a pattern that closely tracks with parenchymal epithelial proliferation and alveolar tissue growth. During an initial pro-inflammatory stage of tissue regeneration, Mesothelium promotes epithelial proliferation via WNT ligand secretion, orchestrates an increase in microvascular permeability, and encourages immune extravasation via chemokine secretion. This stage is followed first by a tissue remodeling period, characterized by angiogenesis and BMP pathway sensitization, and then a stable return to homeostasis. Coupled with key changes in parenchymal structure and matrix production, the cumulative effect is a now larger organ including newly-grown, fully-functional tissue parenchyma. This study paints Mesothelial cells as a key orchestrating cell type that defines the boundary of the lung and exerts critical influence over the tissue-level signaling state regulating resident stem cell populations. The cellular circuits unearthed here suggest that human lung regeneration might be inducible through well-engineered approaches targeting the induction of tissue regeneration and safe return to homeostasis.
RESUMO
Mast-cell expressed membrane protein-1 (MCEMP1) is higher in patients with idiopathic pulmonary fibrosis (IPF) with an increased risk of death. Here we aimed to establish the mechanistic role of MCEMP1 in pulmonary fibrosis. We identified increased MCEMP1 expression in classical monocytes and alveolar macrophages in IPF compared with controls. MCEMP1 is upregulated by transforming growth factor beta (TGFß) at the mRNA and protein levels in monocytic leukemia THP-1 cells. TGFß-mediated MCEMP1 upregulation results from the cooperation of SMAD3 and SP1 via concomitant binding to SMAD3/SP1 cis-regulatory elements within the MCEMP1 promoter. We also found that MCEMP1 regulates TGFß-mediated monocyte chemotaxis, adhesion, and migration. Our results suggest that MCEMP1 may regulate the migration and transition of monocytes to monocyte-derived alveolar macrophages during pulmonary fibrosis development and progression.NEW & NOTEWORTHY MCEMP1 is highly expressed in circulating classical monocytes and alveolar macrophages in IPF, is regulated by TGFß, and participates in the chemotaxis, adhesion, and migration of circulating monocytes by modulating the effect of TGFß in RHO activity.