Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 52
Filtrar
1.
NPJ Vaccines ; 9(1): 56, 2024 Mar 08.
Artigo em Inglês | MEDLINE | ID: mdl-38459072

RESUMO

Shigella spp. are a leading bacterial cause of diarrhea. No widely licensed vaccines are available and there is no generally accepted correlate of protection. We tested a S. sonnei Generalized Modules for Membrane Antigen (GMMA)-based vaccine (1790GAHB) in a phase 2b, placebo-controlled, randomized, controlled human infection model study (NCT03527173) enrolling healthy United States adults aged 18-50 years. We report analyses evaluating immune responses to vaccination, with the aim to identify correlates of risk for shigellosis among assessed immunomarkers. We found that 1790GAHB elicited S. sonnei lipopolysaccharide specific α4ß7+ immunoglobulin (Ig) G and IgA secreting B cells which are likely homing to the gut, indicating the ability to induce a mucosal in addition to a systemic response, despite parenteral delivery. We were unable to establish or confirm threshold levels that predict vaccine efficacy facilitating the evaluation of vaccine candidates. However, serum anti-lipopolysaccharide IgG and bactericidal activity were identified as potential correlates of risk for shigellosis.

2.
Open Forum Infect Dis ; 11(Suppl 1): S58-S64, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38532958

RESUMO

Background: Molecular diagnostics on human fecal samples have identified a larger burden of shigellosis than previously appreciated by culture. Evidence of fold changes in immunoglobulin G (IgG) to conserved and type-specific Shigella antigens could be used to validate the molecular assignment of type-specific Shigella as the etiology of acute diarrhea and support polymerase chain reaction (PCR)-based microbiologic end points for vaccine trials. Methods: We will test dried blood spots collected at enrollment and 4 weeks later using bead-based immunoassays for IgG to invasion plasmid antigen B and type-specific lipopolysaccharide O-antigen for Shigella flexneri 1b, 2a, 3a, and 6 and Shigella sonnei in Shigella-positive cases and age-, site-, and season-matched test-negative controls from all sites in the Enterics for Global Health (EFGH) Shigella surveillance study. Fold antibody responses will be compared between culture-positive, culture-negative but PCR-attributable, and PCR-positive but not attributable cases and test-negative controls. Age- and site-specific seroprevalence distributions will be identified, and the association between baseline antibodies and Shigella attribution will be estimated. Conclusions: The integration of these assays into the EFGH study will help support PCR-based attribution of acute diarrhea to type-specific Shigella, describe the baseline seroprevalence of conserved and type-specific Shigella antibodies, and support correlates of protection for immunity to Shigella diarrhea. These insights can help support the development and evaluation of Shigella vaccine candidates.

3.
Vaccine ; 42(7): 1445-1453, 2024 Mar 07.
Artigo em Inglês | MEDLINE | ID: mdl-38036392

RESUMO

The global public health nonprofit organization PATH hosted the third Vaccines Against Shigella and Enterotoxigenic Escherichia coli (VASE) Conference in Washington, DC, from November 29 to December 1, 2022. This international gathering focused on cutting-edge research related to the development of vaccines against neglected diarrheal pathogens including Shigella, enterotoxigenic Escherichia coli (ETEC), Campylobacter, and non-typhoidal Salmonella. In addition to the conference's plenary content, the agenda featured ten breakout workshops on topics of importance to the enteric vaccine field. This unique aspect of VASE Conferences allows focused groups of attendees to engage in in-depth discussions on subjects of interest to the enteric vaccine development community. In 2022, the workshops covered a range of topics. Two focused on the public health value of enteric vaccines, with one examining how to translate evidence into policy and the other on the value proposition of potential combination vaccines against bacterial enteric pathogens. Two more workshops explored new tools for the development and evaluation of vaccines, with the first on integrating antigen/antibody technologies for mucosal vaccine and immunoprophylactic development, and the second on adjuvants specifically for Shigella vaccines for children in low- and middle-income countries. Another pair of workshops covered the status of vaccines against two emerging enteric pathogens, Campylobacter and invasive non-typhoidal Salmonella. The remaining four workshops examined the assessment of vaccine impact on acute and long-term morbidity. These included discussions on the nature and severity of intestinal inflammation; cellular immunity and immunological memory in ETEC and Shigella infections; clinical and microbiologic endpoints for Shigella vaccine efficacy studies in children; and intricacies of protective immunity to enteric pathogens. This article provides a brief summary of the presentations and discussions at each workshop in order to share these sessions with the broader enteric vaccine field.


Assuntos
Escherichia coli Enterotoxigênica , Infecções por Escherichia coli , Vacinas contra Escherichia coli , Oligopeptídeos , Vacinas contra Shigella , Shigella , Criança , Humanos , Diarreia/prevenção & controle , Salmonella
4.
PLoS One ; 18(12): e0294021, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-38091314

RESUMO

Infectious diarrhea is a World Health Organization public health priority area due to the lack of effective vaccines and an accelerating global antimicrobial resistance crisis. New strategies are urgently needed such as immunoprophylactic for prevention of diarrheal diseases. Hyperimmune bovine colostrum (HBC) is an established and effective prophylactic for infectious diarrhea. The commercial HBC product, Travelan® (Immuron Ltd, Australia) targets multiple strains of enterotoxigenic Escherichia coli (ETEC) is highly effective in preventing diarrhea in human clinical studies. Although Travelan® targets ETEC, preliminary studies suggested cross-reactivity with other Gram-negative enteric pathogens including Shigella and Salmonella species. For this study we selected an invasive diarrheal/dysentery-causing enteric pathogen, Shigella, to evaluate the effectiveness of Travelan®, both in vitro and in vivo. Here we demonstrate broad cross-reactivity of Travelan® with all four Shigella spp. (S. flexneri, S. sonnei, S. dysenteriae and S. boydii) and important virulence factor Shigella antigens. Naïve juvenile rhesus macaques (NJRM) were randomized, 8 dosed with Travelan® and 4 with a placebo intragastrically twice daily over 6 days. All NJRM were challenged with S. flexneri 2a strain 2457T on the 4th day of treatment and monitored for diarrheal symptoms. All placebo-treated NJRM displayed acute dysentery symptoms within 24-36 hours of challenge. Two Travelan®-treated NJRM displayed dysentery symptoms and six animals remained healthy and symptom-free post challenge; resulting in 75% efficacy of prevention of shigellosis (p = 0.014). These results strongly indicate that Travelan® is functionally cross-reactive and an effective prophylactic for shigellosis. This has positive implications for the prophylactic use of Travelan® for protection against both ETEC and Shigella spp. diarrheal infections. Future refinement and expansion of pathogens recognized by HBC including Travelan® could revolutionize current management of gastrointestinal infections and outbreaks in travelers' including military, peacekeepers, humanitarian workers and in populations living in endemic regions of the world.


Assuntos
Disenteria Bacilar , Disenteria , Escherichia coli Enterotoxigênica , Shigella , Feminino , Gravidez , Animais , Bovinos , Humanos , Disenteria Bacilar/epidemiologia , Macaca mulatta , Colostro , Fatores Imunológicos , Diarreia/prevenção & controle
5.
Infect Immun ; 91(11): e0031623, 2023 Nov 16.
Artigo em Inglês | MEDLINE | ID: mdl-37795982

RESUMO

There are no licensed vaccines for Shigella, a leading cause of children's diarrhea and a common etiology of travelers' diarrhea. To develop a cross-protective Shigella vaccine, in this study, we constructed a polyvalent protein immunogen to present conserved immunodominant epitopes of Shigella invasion plasmid antigens B (IpaB) and D (IpaD), VirG, GuaB, and Shiga toxins on backbone protein IpaD, by applying an epitope- and structure-based multiepitope-fusion-antigen (MEFA) vaccinology platform, examined protein (Shigella MEFA) broad immunogenicity, and evaluated antibody function against Shigella invasion and Shiga toxin cytotoxicity but also protection against Shigella lethal challenge. Mice intramuscularly immunized with Shigella MEFA protein developed IgG responses to IpaB, IpaD, VirG, GuaB, and Shiga toxins 1 and 2; mouse sera significantly reduced invasion of Shigella sonnei, Shigella flexneri serotype 2a, 3a, or 6, Shigella boydii, and Shigella dysenteriae type 1 and neutralized cytotoxicity of Shiga toxins of Shigella and Shiga toxin-producing Escherichia coli in vitro. Moreover, mice intranasally immunized with Shigella MEFA protein (adjuvanted with dmLT) developed antigen-specific serum IgG, lung IgG and IgA, and fecal IgA antibodies, and survived from lethal pulmonary challenge with S. sonnei or S. flexneri serotype 2a, 3a, or 6. In contrast, the control mice died, became unresponsive, or lost 20% of body weight in 48 h. These results indicated that this Shigella MEFA protein is broadly immunogenic, induces broadly functional antibodies, and cross-protects against lethal pulmonary challenges with S. sonnei or S. flexneri serotypes, suggesting a potential application of this polyvalent MEFA protein in Shigella vaccine development.


Assuntos
Disenteria Bacilar , Vacinas contra Shigella , Shigella , Humanos , Criança , Animais , Camundongos , Shigella sonnei , Shigella flexneri , Diarreia , Viagem , Antígenos de Bactérias/genética , Pulmão , Toxinas Shiga , Imunoglobulina G , Imunoglobulina A , Anticorpos Antibacterianos , Disenteria Bacilar/prevenção & controle
6.
Vaccine ; 41(42): 6261-6271, 2023 Oct 06.
Artigo em Inglês | MEDLINE | ID: mdl-37666695

RESUMO

Shigella species cause severe disease among travelers to, and children living in, endemic countries. Although significant efforts have been made to improve sanitation, increased antibiotic resistance and other factors suggest an effective vaccine is a critical need. Artificial Invaplex (InvaplexAR) is a subunit vaccine approach complexing Shigella LPS with invasion plasmid antigens. In pre-clinical studies, the InvaplexAR vaccine demonstrated increased immunogenicity as compared to the first generation product and was subsequently manufactured under cGMP for clinical testing in a first-in-human Phase 1 study. The primary objective of this study was the safety of S. flexneri 2a InvaplexAR given by intranasal (IN) immunization (without adjuvant) in a single-center, open-label, dose-escalating Phase 1 trial and secondarily to assess immunogenicity to identify a dose of InvaplexAR for subsequent clinical evaluations. Subjects received three IN immunizations of InvaplexAR, two weeks apart, in increasing dose cohorts (10 µg, 50 µg, 250 µg, and 500 µg). Adverse events were monitored using symptom surveillance, memory aids, and targeted physical exams. Samples were collected throughout the study to investigate vaccine-induced systemic and mucosal immune responses. There were no adverse events that met vaccination-stopping criteria. The majority (96%) of vaccine-related adverse events were mild in severity (most commonly nasal congestion, rhinorrhea, and post-nasal drip). Vaccination with InvaplexAR induced anti-LPS serum IgG responses and anti-Invaplex IgA and IgG antibody secreting cell (ASC) responses at vaccine doses ≥250 µg. Additionally, mucosal immune responses and functional antibody responses were seen from the serum bactericidal assay measurements. Notably, the responder rates and the kinetics of ASCs and antibody lymphocyte secretion (ALS) were similar, suggesting that either assay may be employed to identify IgG and IgA secreting cells. Further studies with InvaplexAR will evaluate alternative immunization routes, vaccination schedules and formulations to further optimize immunogenicity. (Clinical Trial Registry Number NCT02445963).

7.
Vaccine ; 41(34): 4967-4977, 2023 07 31.
Artigo em Inglês | MEDLINE | ID: mdl-37400283

RESUMO

There is a need for vaccines effective against shigella infection in young children in resource-limited areas. Protective immunity against shigella infection targets the O-specific polysaccharide (OSP) component of lipopolysaccharide. Inducing immune responses to polysaccharides in young children can be problematic, but high level and durable responses can be induced by presenting polysaccharides conjugated to carrier proteins. An effective shigella vaccine will need to be multivalent, targeting the most common global species and serotypes such as Shigella flexneri 2a, S. flexneri 3a, S. flexneri 6, and S. sonnei. Here we report the development of shigella conjugate vaccines (SCV) targeting S. flexneri 2a (SCV-Sf2a) and 3a (SCV-Sf3a) using squaric acid chemistry to result in single point sun-burst type display of OSP from carrier protein rTTHc, a 52 kDa recombinant protein fragment of the heavy chain of tetanus toxoid. We confirmed structure and demonstrated that these conjugates were recognized by serotype-specific monoclonal antibodies and convalescent sera of humans recovering from shigellosis in Bangladesh, suggesting correct immunological display of OSP. We vaccinated mice and found induction of serotype-specific OSP and LPS IgG responses, as well as rTTHc-specific IgG responses. Vaccination induced serotype-specific bactericidal antibody responses against S. flexneri, and vaccinated animals were protected against keratoconjunctivitis (Sereny test) and intraperitoneal challenge with virulent S. flexneri 2a and 3a, respectively. Our results support further development of this platform conjugation technology in the development of shigella conjugate vaccines for use in resource-limited settings.


Assuntos
Disenteria Bacilar , Vacinas contra Shigella , Shigella , Humanos , Criança , Animais , Camundongos , Pré-Escolar , Shigella flexneri , Vacinas Conjugadas , Disenteria Bacilar/prevenção & controle , Lipopolissacarídeos , Antígenos O , Anticorpos Antibacterianos , Imunoglobulina G
8.
mSphere ; 8(4): e0007323, 2023 08 24.
Artigo em Inglês | MEDLINE | ID: mdl-37389412

RESUMO

The Shigella artificial invasin complex (InvaplexAR) vaccine is a subunit approach that effectively induces robust immunogenicity directed to serotype-specific lipopolysaccharide and the broadly conserved IpaB and IpaC proteins. One advantage of the vaccine approach is the ability to adjust the constituents to address suboptimal immunogenicity and to change the Shigella serotype targeted by the vaccine. As the vaccine moves through the product development pipeline, substantial modifications have been made to address manufacturing feasibility, acceptability to regulatory authorities, and developing immunogenic and effective products for an expanded list of Shigella serotypes. Modifications of the recombinant clones used to express affinity tag-free proteins using well-established purification methods, changes to detergents utilized in the assembly process, and in vitro and in vivo evaluation of different Invaplex formulations have led to the establishment of a scalable, reproducible manufacturing process and enhanced immunogenicity of Invaplex products designed to protect against four of the most predominant Shigella serotypes responsible for global morbidity and mortality. These adjustments and improvements provide the pathway for the manufacture and clinical testing of a multivalent Invaplex vaccine. IMPORTANCE Shigella species are a major global health concern that cause severe diarrhea and dysentery in children and travelers to endemic areas of the world. Despite significant advancements in access to clean water, the increases in antimicrobial resistance and the risk of post-infection sequelae, including cognitive and physical stunting in children, highlight the urgent need for an efficacious vaccine. One promising vaccine approach, artificial Invaplex, delivers key antigens recognized by the immune system during infection, which results in increased resistance to re-infection. The work presented here describes novel modifications to a previously described vaccine approach resulting in improved methods for manufacturing and regulatory approvals, expansion of the breadth of coverage to all major Shigella serotypes, and an increase in the potency of artificial Invaplex.


Assuntos
Vacinas contra Shigella , Shigella , Vacinas , Criança , Humanos , Shigella flexneri , Lipopolissacarídeos
9.
Violence Vict ; 38(3): 435-456, 2023 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-37348956

RESUMO

While there is substantial public health literature that documents the negative impacts of living in "food deserts" (e.g., obesity and diabetes), little is known regarding whether living in a food desert is associated with increased criminal victimization. With the block group as the unit of analysis, the present study examines whether there is a relationship between food deserts and elevated crime counts, and whether this relationship varies by racial composition. Results from multiple count models suggest that living in a food desert is not associated with higher levels of violent or property crime. But multiplicative models interacting percent Black with food deserts revealed statistically significant associations with violent crime but not property crime. Alternatively, multiplicative models interacting percent White with food deserts revealed statistically significant associational reductions in violent crimes. Several policy and research implications are discussed.


Assuntos
Vítimas de Crime , Desertos Alimentares , Humanos , Violência , Crime , Agressão
10.
bioRxiv ; 2023 May 05.
Artigo em Inglês | MEDLINE | ID: mdl-37205407

RESUMO

Shigella is the second leading cause of diarrheal disease-related death in young children in low and middle income countries. The mechanism of protection against shigella infection and disease in endemic areas is uncertain. While historically LPS-specific IgG titers have been associated with protection in endemic settings, emerging deeper immune approaches have recently elucidated a protective role for IpaB-specific antibody responses in a controlled human challenge model in North American volunteers. To deeply interrogate potential correlates of immunity in areas endemic for shigellosis, here we applied a systems approach to analyze the serological response to shigella across endemic and non-endemic populations. Additionally, we analyzed shigella-specific antibody responses over time in the context of endemic resistance or breakthrough infections in a high shigella burden location. Individuals with endemic exposure to shigella possessed broad and functional antibody responses across both glycolipid and protein antigens compared to individuals from non-endemic regions. In high shigella burden settings, elevated levels of OSP-specific FcαR binding antibodies were associated with resistance to shigellosis. OSP-specific FcαR binding IgA found in resistant individuals activated bactericidal neutrophil functions including phagocytosis, degranulation and reactive oxygen species production. Moreover, IgA depletion from resistant serum significantly reduced binding of OSP-specific antibodies to FcαR and antibody mediated activation of neutrophils and monocytes. Overall, our findings suggest that OSP-specific functional IgA responses contribute to protective immunity against shigella infection in high-burden settings. These findings will assist in the development and evaluation of shigella vaccines.

11.
Artigo em Inglês | MEDLINE | ID: mdl-35616717

RESUMO

Shigella-controlled human infection models (CHIMs) are an invaluable tool utilized by the vaccine community to combat one of the leading global causes of infectious diarrhea, which affects infants, children and adults regardless of socioeconomic status. The impact of shigellosis disproportionately affects children in low- and middle-income countries (LMICs) resulting in cognitive and physical stunting, perpetuating a cycle that must be halted. Shigella-CHIMs not only facilitate the early evaluation of enteric countermeasures and up-selection of the most promising products but also provide insight into mechanisms of infection and immunity that are not possible utilizing animal models or in vitro systems. The greater understanding of shigellosis obtained in CHIMs builds and empowers the development of new generation solutions to global health issues which are unattainable in the conventional laboratory and clinical settings. Therefore, refining, mining and expansion of safe and reproducible infection models hold the potential to create effective means to end diarrheal disease and associated co-morbidities associated with Shigella infection.

12.
mSphere ; 7(3): e0102021, 2022 06 29.
Artigo em Inglês | MEDLINE | ID: mdl-35611657

RESUMO

Diarrheal diseases are a leading cause of global morbidity and mortality, disproportionately affecting children in resource-limited settings. Although improvements in hygiene and access to clean water are helpful, vaccines are considered essential due to the low infectious dose of Shigella species and increasing antibiotic resistance. Building on achievements with conjugate vaccines, a safe and immunogenic novel bioconjugate vaccine linking Shigella O-antigen to Pseudomonas aeruginosa exoprotein A has been developed to induce immunity against Shigella flexneri 2a, 3a, and 6 and S. sonnei. This study evaluated the breadth of reactivity and functionality of pooled serum from rabbits immunized with monovalent and quadrivalent Shigella bioconjugates formulated with or without an adjuvant against Shigella serotypes isolated in Kenya. Rabbit sera were assayed by colony blot for reactivity with 67 isolates of Shigella serotypes targeted by the vaccine, S. flexneri (2a, 3a, and 6) and S. sonnei, and 42 isolates of Shigella serotypes not targeted by the vaccine, S. flexneri (1b, 2b, 4a, and 4b), S. boydii, and S. dysenteriae. Shigella isolates testing positive in the colony blot assay were then used to assess functional activity using a bactericidal assay. Of the 41 Shigella isolates targeted by the vaccine, 22 were reactive with the adjuvanted quadrivalent and the respective monovalent rabbit sera. The S. flexneri 2a and 3a monovalent rabbit serum cross-reacted with S. flexneri 3a, 2b, and 2a, respectively. Immunization with the adjuvanted quadrivalent vaccine also induced cross-reactivity with isolates of S. flexneri 2b, 4a, and 4b. Collectively, these results suggest that the Shigella quadrivalent vaccine may be more broadly protective than designed, offering a promising solution to Shigella infections. IMPORTANCE Diarrheal diseases are the third leading cause of death globally, disproportionally affecting low- to middle-income countries like Kenya, with Shigella species being the leading cause of bacterial diarrhea, especially in children. The low infectious dose and high antibiotic resistance levels complicate treatment, leading to long-term sequelae that necessitate control measures such as vaccines to reduce morbidity and mortality rates, especially among children under 5 years of age. A quadrivalent bioconjugate Shigella vaccine was recently developed to safely and effectively induce immunity against four important Shigella spp. This study demonstrates the breadth of reactivity and functionality of the parenterally administered bioconjugate vaccine by evaluating the ability of rabbit sera to bind and kill Shigella isolates recently collected in Kenya. These results suggest that the Shigella quadrivalent vaccine may be more broadly protective than designed and may offer a promising solution to the morbidity and mortality associated with Shigella infections.


Assuntos
Disenteria Bacilar , Vacinas contra Shigella , Shigella , Animais , Anticorpos Antibacterianos , Antígenos de Bactérias , Diarreia , Quênia , Coelhos , Shigella sonnei , Vacinação , Vacinas Combinadas
13.
Vaccines (Basel) ; 10(4)2022 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-35455297

RESUMO

The Shigella invasin complex or Invaplex vaccine is a unique subunit approach to generate a protective immune response. Invaplex is a large, macromolecular complex consisting of the major Shigella antigens: lipopolysaccharide (LPS) and the invasion plasmid antigen (Ipa) proteins B and C. Over the past several decades, the vaccine has progressed from initial observations through pre-clinical studies to cGMP manufacture and clinical evaluations. The Invaplex product maintains unique biological properties associated with the invasiveness of virulent shigellae and also presents both serotype-specific epitopes, as well as highly conserved invasin protein epitopes, to the immunized host. The vaccine product has evolved from a native product isolated from wild-type shigellae (native Invaplex) to a more defined vaccine produced from purified LPS and recombinant IpaB and IpaC (artificial Invaplex). Each successive "generation" of the vaccine is derived from earlier versions, resulting in improved immunogenicity, homogeneity and effectiveness. The current vaccine, detoxified artificial Invaplex (InvaplexAR-Detox), was developed for parenteral administration by incorporating LPS with under-acylated lipid A. InvaplexAR-Detox has demonstrated an excellent safety and immunogenicity profile in initial clinical studies and is advancing toward evaluations in the target populations of children and travelers to endemic countries.

15.
Clin Trials ; 19(1): 116-118, 2022 02.
Artigo em Inglês | MEDLINE | ID: mdl-34708664

RESUMO

The use of the controlled human infection model to facilitate product development and to advance understanding of host-pathogen interactions is of increasing interest. While administering a virulent (or infective) organism to a susceptible host necessitates an ongoing evaluation of safety and ethical considerations, a central theme in conducting these studies in a safe and ethical manner that yields actionable data is their conduct in facilities well-suited to address their unique attributes. To that end, we have developed a framework for evaluating potential sites in which to conduct inpatient enteric controlled human infection model to ensure consistency and increase the likelihood of success.


Assuntos
Interações Hospedeiro-Patógeno , Pacientes Internados , Humanos
16.
EClinicalMedicine ; 39: 101076, 2021 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-34430837

RESUMO

BACKGROUND: Shigellosis accounts for substantial morbidity and mortality worldwide and is the second most common cause of moderate and severe diarrhoea in children. METHODS: This phase 2b study (NCT03527173), conducted between August 2018 and November 2019, evaluated vaccine efficacy (VE), safety, and immunogenicity of a Shigella sonnei GMMA candidate vaccine (1790GAHB) in adults, using a S. sonnei 53 G controlled human infection model. Participants (randomized 1:1) received two doses of 1790GAHB or placebo (GAHB-Placebo), at day (D) 1 and D29, and an oral challenge of S. sonnei 53 G at D57. VE was evaluated using several endpoints, reflecting different case definitions of shigellosis. For the primary endpoint, the success criterion was a lower limit of the 90% confidence interval >0. FINDINGS: Thirty-six and 35 participants received 1790GAHB or placebo, respectively; 33 and 29 were challenged, 15 and 12 developed shigellosis. VE was not demonstrated for any endpoint. Adverse events were more frequent in 1790GAHB versus placebo recipients post-vaccination. Anti-S. sonnei lipopolysaccharide (LPS) IgG responses increased at D29 and remained stable through D57 in group 1790GAHB; no increase was shown in placebo recipients. INTERPRETATION: 1790GAHB had an acceptable safety profile and induced anti-LPS IgG responses but did not demonstrate clinical efficacy against shigellosis. Baseline/pre-challenge antibody levels were higher in participants who did not develop shigellosis post-challenge, suggesting a role of anti-LPS IgG antibodies in clinical protection, although not fully elucidated in this study. For further vaccine development an increased S. sonnei O-antigen content is likely needed to enhance anti-LPS immune responses. FUNDING: GlaxoSmithKline Biologicals SA, Bill and Melinda Gates Foundation.

17.
mSphere ; 6(4): e0012221, 2021 08 25.
Artigo em Inglês | MEDLINE | ID: mdl-34259559

RESUMO

Shigella spp. are a leading cause of diarrhea-associated global morbidity and mortality. Development and widespread implementation of an efficacious vaccine remain the best option to reduce Shigella-specific morbidity. Unfortunately, the lack of a well-defined correlate of protection for shigellosis continues to hinder vaccine development efforts. Shigella controlled human infection models (CHIM) are often used in the early stages of vaccine development to provide preliminary estimates of vaccine efficacy; however, CHIMs also provide the opportunity to conduct in-depth immune response characterizations pre- and postvaccination or pre- and postinfection. In the current study, principal-component analyses were used to examine immune response data from two recent Shigella CHIMs in order to characterize immune response profiles associated with parenteral immunization, oral challenge with Shigella flexneri 2a, or oral challenge with Shigella sonnei. Although parenteral immunization induced an immune profile characterized by robust systemic antibody responses, it also included mucosal responses. Interestingly, oral challenge with S. flexneri 2a induced a distinctively different profile compared to S. sonnei, characterized by a relatively balanced systemic and mucosal response. In contrast, S. sonnei induced robust increases in mucosal antibodies with no differences in systemic responses across shigellosis outcomes postchallenge. Furthermore, S. flexneri 2a challenge induced significantly higher levels of intestinal inflammation compared to S. sonnei, suggesting that both serotypes may also differ in how they trigger induction and activation of innate immunity. These findings could have important implications for Shigella vaccine development as protective immune mechanisms may differ across Shigella serotypes. IMPORTANCE Although immune correlates of protection have yet to be defined for shigellosis, prior studies have demonstrated that Shigella infection provides protection against reinfection in a serotype-specific manner. Therefore, it is likely that subjects with moderate to severe disease post-oral challenge would be protected from a homologous rechallenge, and investigating immune responses in these subjects may help identify immune markers associated with the development of protective immunity. This is the first study to describe distinct innate and adaptive immune profiles post-oral challenge with two different Shigella serotypes. Analyses conducted here provide essential insights into the potential of different immune mechanisms required to elicit protective immunity, depending on the Shigella serotype. Such differences could have significant impacts on vaccine design and development within the Shigella field and should be further investigated across multiple Shigella serotypes.


Assuntos
Anticorpos Antibacterianos/imunologia , Disenteria Bacilar/imunologia , Imunização/métodos , Vacinas contra Shigella/imunologia , Shigella flexneri/imunologia , Shigella sonnei/imunologia , Disenteria Bacilar/prevenção & controle , Experimentação Humana/estatística & dados numéricos , Humanos , Sorogrupo , Vacinas contra Shigella/administração & dosagem , Desenvolvimento de Vacinas , Eficácia de Vacinas
18.
Microorganisms ; 9(7)2021 Jun 25.
Artigo em Inglês | MEDLINE | ID: mdl-34202102

RESUMO

The global diarrheal disease burden for Shigella, enterotoxigenic Escherichia coli (ETEC), and Campylobacter is estimated to be 88M, 75M, and 75M cases annually, respectively. A vaccine against this target trio of enteric pathogens could address about one-third of diarrhea cases in children. All three of these pathogens contribute to growth stunting and have demonstrated increasing resistance to antimicrobial agents. Several combinations of antigens are now recognized that could be effective for inducing protective immunity against each of the three target pathogens in a single vaccine for oral administration or parenteral injection. The vaccine combinations proposed here would result in a final product consistent with the World Health Organization's (WHO) preferred product characteristics for ETEC and Shigella vaccines, and improve the vaccine prospects for support from Gavi, the Vaccine Alliance, and widespread uptake by low- and middle-income countries' (LMIC) public health stakeholders. Broadly protective antigens will enable multi-pathogen vaccines to be efficiently developed and cost-effective. This review describes how emerging discoveries for each pathogen component of the target trio could be used to make vaccines, which could help reduce a major cause of poor health, reduced cognitive development, lost economic productivity, and poverty in many parts of the world.

19.
Vaccine X ; 8: 100105, 2021 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-34258576

RESUMO

Development of intranasal vaccines for HIV-1 and other mucosal pathogens has been hampered by the lack of adjuvants that can be given safely to humans. We have found that an intranasal Shigella vaccine (Invaplex) which is well tolerated in humans can also function as an adjuvant for intranasal protein and DNA vaccines in mice. To determine whether Invaplex could potentially adjuvant similar vaccines in humans, we simultaneously administered a simian immunodeficiency virus (SIV) envelope (Env) protein and DNA encoding simian-human immunodeficiency virus (SHIV) with or without Invaplex in the nasal cavity of female rhesus macaques. Animals were intranasally boosted with adenoviral vectors expressing SIV env or gag,pol to evaluate memory responses. Anti-SIV antibodies in sera and nasal, genital tract and rectal secretions were quantitated by ELISA. Intracellular cytokine staining was used to measure Th1-type T cells in blood. Macaques given DNA/protein immunizations with 0.5 mg Invaplex developed greater serum IgG, nasal IgA and cervicovaginal IgA responses to SIV Env and SHIV Gag,Pol proteins when compared to non-adjuvanted controls. Rectal IgA responses to Env were only briefly elevated and not observed to Gag,Pol. Invaplex increased frequencies of IFNγ-producing CD4 and CD8 T cells to the Env protein, but not T cell responses induced by the DNA. Ad-SIV boosting increased Env-specific polyfunctional T cells and Env- and Gag,Pol-specific antibodies in serum and all secretions. The data suggest that Invaplex could be highly effective as an adjuvant for intranasal protein vaccines in humans, especially those intended to prevent infections in the genital or respiratory tract.

20.
Sensors (Basel) ; 21(14)2021 Jul 14.
Artigo em Inglês | MEDLINE | ID: mdl-34300544

RESUMO

Gamification is known to enhance users' participation in education and research projects that follow the citizen science paradigm. The Cosmic Ray Extremely Distributed Observatory (CREDO) experiment is designed for the large-scale study of various radiation forms that continuously reach the Earth from space, collectively known as cosmic rays. The CREDO Detector app relies on a network of involved users and is now working worldwide across phones and other CMOS sensor-equipped devices. To broaden the user base and activate current users, CREDO extensively uses the gamification solutions like the periodical Particle Hunters Competition. However, the adverse effect of gamification is that the number of artefacts, i.e., signals unrelated to cosmic ray detection or openly related to cheating, substantially increases. To tag the artefacts appearing in the CREDO database we propose the method based on machine learning. The approach involves training the Convolutional Neural Network (CNN) to recognise the morphological difference between signals and artefacts. As a result we obtain the CNN-based trigger which is able to mimic the signal vs. artefact assignments of human annotators as closely as possible. To enhance the method, the input image signal is adaptively thresholded and then transformed using Daubechies wavelets. In this exploratory study, we use wavelet transforms to amplify distinctive image features. As a result, we obtain a very good recognition ratio of almost 99% for both signal and artefacts. The proposed solution allows eliminating the manual supervision of the competition process.


Assuntos
Processamento de Imagem Assistida por Computador , Redes Neurais de Computação , Artefatos , Humanos , Aprendizado de Máquina , Análise de Ondaletas
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA