Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 15 de 15
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Sci Rep ; 14(1): 16555, 2024 07 17.
Artigo em Inglês | MEDLINE | ID: mdl-39019971

RESUMO

Mechanized biochar field application remains challenging due to biochar's poor flowability and bulk density. Granulation of biochar with fertilizer provides a product ready for application with well-established machinery. However, it's unknown whether granulated biochar-based fertilizers (gBBF) are as effective as co-application of non-granulated biochar with fertilizer. Here, we compared a gBBF with a mineral compound fertilizer (control), and with a non-granulated biochar that was co-applied at a rate of 1.1 t ha-1 with the fertilizer in a white cabbage greenhouse pot trial. Half the pots received heavy rain simulation treatments to investigate nutrient leaching. Crop yields were not significantly increased by biochar without leaching compared to the control. With leaching, cabbage yield increased with gBBF and biochar-co-application by 14% (p > 0.05) and 34% (p < 0.05), respectively. Nitrogen leaching was reduced by 26-35% with both biochar amendments. Biochar significantly reduced potassium, magnesium, and sulfur leaching. Most nitrogen associated with gBBF was released during the trial and the granulated biochar regained its microporosity. Enriching fertilizers with biochar by granulation or co-application can improve crop yields and decrease nutrient leaching. While the gBBF yielded less biomass compared to biochar co-application, improved mechanized field application after granulation could facilitate the implementation of biochar application in agriculture.


Assuntos
Carvão Vegetal , Produtos Agrícolas , Fertilizantes , Minerais , Carvão Vegetal/química , Produtos Agrícolas/crescimento & desenvolvimento , Minerais/química , Nitrogênio/química , Brassica/crescimento & desenvolvimento , Solo/química , Nutrientes , Agricultura/métodos , Magnésio/química
2.
Environ Pollut ; 332: 121810, 2023 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-37201571

RESUMO

Plastics have become an emerging pollutant threatening the sustainability of agroecosystems and global food security. Biochar, a pro-ecosystem/negative carbon emission technology can be exploited as a circular approach for the conservation of plastics contaminated agricultural soils. However, relatively few studies have focused on the effects of biochar on plant growth and soil biochemical properties in a microplastic contaminated soil. This study investigated the effects of a cotton stalk (Gossypium hirsutum L.) biochar on plant growth, soil microbes, and enzyme activity in PVC microplastic (PVC-MPs) contaminated soil. Biochar amendment increased shoot dry matter production in PVC-MPs contaminated soil. However, PVC-MPs alone significantly reduced the soil urease and dehydrogenase activity, soil organic and microbial biomass carbon, bacterial/fungal community percentage, and their abundance (16S rRNA and 18S rRNA genes, respectively). Interestingly, biochar amendment with PVC-MPs significantly alleviated the hazardous effects. Principal component and redundancy analysis of the soil properties, bacterial 16S rRNA genes, and fungal ITS in the biochar-amended PVC-MPs treatments revealed that the observed traits formed an obvious cluster compared to non-biochar treatments. To sum up, this study indicated that PVC-MPs contamination was not benign, while biochar shielded the hazardous effects and sustained soil microbial functionality.


Assuntos
Microplásticos , Poluentes do Solo , Ecossistema , Plásticos , Solo/química , RNA Ribossômico 16S , Microbiologia do Solo , Carvão Vegetal/farmacologia , Carvão Vegetal/química , Carbono , Poluentes do Solo/toxicidade , Poluentes do Solo/química
3.
Sci Rep ; 10(1): 13816, 2020 08 14.
Artigo em Inglês | MEDLINE | ID: mdl-32796884

RESUMO

Biochar may serve as a tool to sustainably mitigate climate change via carbon sequestration and by improving soil fertility. Biochar has shown to retain nitrate in its pores, which increases with an organic coating of the inner surfaces and residence time in soil ("aging"). Here we investigated the plant accessibility of the captured nitrate in field-aged biochar, as a pre-requisite for developing carbon-based N fertilization techniques with environmental benefits. Based on previous results, we hypothesized that part of the biochar-captured nitrate would remain unavailable for plants. A two-factorial greenhouse experiment was designed, where the N was applied either as Ca(NO3)2 or as N captured in field-aged biochar at five increasing N doses to quinoa and perennial ryegrass in pots. Interestingly, the biochar-captured N was as plant available as the mineral nitrate, except for the highest dosage. Refuting our hypothesis, no significant amounts of N were extractable at the end of the study from the biochar-soil mixtures with repeated-extraction protocols. Thus, N captured by biochar may improve the N use efficiency in agriculture. Further research should evaluate the role of biochar particle size, root morphology, mycorrhization, and soil moisture (variations) for nitrate retrieval from biochar particles by plants because the captured biochar N was less available in the field as under present controlled conditions.

4.
Chemosphere ; 214: 743-753, 2019 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-30293028

RESUMO

Metal-blending of biomass prior to pyrolysis is investigated in this work as a tool to modify biochar physico-chemical properties and its behavior as adsorbent. Six different compounds were used for metal-blending: AlCl3, Cu(OH)2, FeSO4, KCl, MgCl2 and Mg(OH)2. Pyrolysis experiments were performed at 400 and 700 °C and the characterization of biochar properties included: elemental composition, thermal stability, surface area and pore size distribution, Zeta potential, redox potential, chemical structure (with nuclear magnetic resonance) and adsorption behavior of arsenate, phosphate and nitrate. Metalblending strongly affected biochars' surface charge and redox potential. Moreover, it increased biochars' microporosity (per mass of organic carbon). For most biochars, mesoporosity was also increased. The adsorption behavior was enhanced for all metal-blended biochars, although with significant differences across species: Mg(OH)2-blended biochar produced at 400 °C showed the highest phosphate adsorption capacity (Langmuir Qmax approx. 250 mg g-1), while AlCl3-blended biochar produced also at 400 °C showed the highest arsenate adsorption (Langmuir Qmax approx. 14 mg g-1). Significant differences were present, even for the same biochar, with respect to the investigated oxyanions. This indicates that biochar properties need to be optimized for each application, but also that this optimization can be achieved with tools such as metal-blending. These results constitute a significant contribution towards the production of designer biochars.


Assuntos
Biomassa , Carvão Vegetal/química , Metais/química , Adsorção
5.
Sci Total Environ ; 618: 1210-1223, 2018 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-29126641

RESUMO

Recent studies have demonstrated the importance of the nutrient status of biochar and soils prior to its inclusion in particular agricultural systems. Pre-treatment of nutrient-reactive biochar, where nutrients are loaded into pores and onto surfaces, gives improved yield outcomes compared to untreated biochar. In this study we have used a wide selection of spectroscopic and microscopic techniques to investigate the mechanisms of nutrient retention in a high temperature wood biochar, which had negative effects on Chenopodium quinoa above ground biomass yield when applied to the system without prior nutrient loading, but positive effects when applied after composting. We have compared non-composted biochar (BC) with composted biochar (BCC) to elucidate the differences which may have led to these results. The results of our investigation provide evidence for a complex series of reactions during composting, where dissolved nutrients are first taken up into biochar pores along a concentration gradient and through capillary action, followed by surface sorption and retention processes which block biochar pores and result in deposition of a nutrient-rich organomineral (plaque) layer. The lack of such pretreatment in the BC samples would render it reactive towards nutrients in a soil-fertilizer system, making it a competitor for, rather than provider of, nutrients for plant growth.

6.
Glob Chang Biol ; 24(9): 3875-3885, 2018 09.
Artigo em Inglês | MEDLINE | ID: mdl-28370878

RESUMO

Future increase in atmospheric CO2 concentrations will potentially enhance grassland biomass production and shift the functional group composition with consequences for ecosystem functioning. In the "GiFACE" experiment (Giessen Free Air Carbon dioxide Enrichment), fertilized grassland plots were fumigated with elevated CO2 (eCO2 ) year-round during daylight hours since 1998, at a level of +20% relative to ambient concentrations (in 1998, aCO2 was 364 ppm and eCO2 399 ppm; in 2014, aCO2 was 397 ppm and eCO2 518 ppm). Harvests were conducted twice annually through 23 years including 17 years with eCO2 (1998 to 2014). Biomass consisted of C3 grasses and forbs, with a small proportion of legumes. The total aboveground biomass (TAB) was significantly increased under eCO2 (p = .045 and .025, at first and second harvest). The dominant plant functional group grasses responded positively at the start, but for forbs, the effect of eCO2 started out as a negative response. The increase in TAB in response to eCO2 was approximately 15% during the period from 2006 to 2014, suggesting that there was no attenuation of eCO2 effects over time, tentatively a consequence of the fertilization management. Biomass and soil moisture responses were closely linked. The soil moisture surplus (c. 3%) in eCO2 manifested in the latter years was associated with a positive biomass response of both functional groups. The direction of the biomass response of the functional group forbs changed over the experimental duration, intensified by extreme weather conditions, pointing to the need of long-term field studies for obtaining reliable responses of perennial ecosystems to eCO2 and as a basis for model development.


Assuntos
Biomassa , Dióxido de Carbono/farmacologia , Pradaria , Dióxido de Carbono/análise , Ecossistema , Fabaceae/efeitos dos fármacos , Fabaceae/crescimento & desenvolvimento , Poaceae/efeitos dos fármacos , Poaceae/crescimento & desenvolvimento , Solo
7.
Nat Commun ; 8(1): 1089, 2017 10 20.
Artigo em Inglês | MEDLINE | ID: mdl-29057875

RESUMO

Amending soil with biochar (pyrolized biomass) is suggested as a globally applicable approach to address climate change and soil degradation by carbon sequestration, reducing soil-borne greenhouse-gas emissions and increasing soil nutrient retention. Biochar was shown to promote plant growth, especially when combined with nutrient-rich organic matter, e.g., co-composted biochar. Plant growth promotion was explained by slow release of nutrients, although a mechanistic understanding of nutrient storage in biochar is missing. Here we identify a complex, nutrient-rich organic coating on co-composted biochar that covers the outer and inner (pore) surfaces of biochar particles using high-resolution spectro(micro)scopy and mass spectrometry. Fast field cycling nuclear magnetic resonance, electrochemical analysis and gas adsorption demonstrated that this coating adds hydrophilicity, redox-active moieties, and additional mesoporosity, which strengthens biochar-water interactions and thus enhances nutrient retention. This implies that the functioning of biochar in soil is determined by the formation of an organic coating, rather than biochar surface oxidation, as previously suggested.

8.
PLoS One ; 12(2): e0171214, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28199354

RESUMO

Slow release of nitrate by charred organic matter used as a soil amendment (i.e. biochar) was recently suggested as potential mechanism of nutrient delivery to plants which may explain some agronomic benefits of biochar. So far, isolated soil-aged and composted biochar particles were shown to release considerable amounts of nitrate only in extended (>1 h) extractions ("slow release"). In this study, we quantified nitrate and ammonium release by biochar-amended soil and compost during up to 167 h of repeated extractions in up to six consecutive steps to determine the effect of biochar on the overall mineral nitrogen retention. We used composts produced from mixed manures amended with three contrasting biochars prior to aerobic composting and a loamy soil that was amended with biochar three years prior to analysis and compared both to non-biochar amended controls. Composts were extracted with 2 M KCl at 22°C and 65°C, after sterilization, after treatment with H2O2, after removing biochar particles or without any modification. Soils were extracted with 2 M KCl at 22°C. Ammonium was continuously released during the extractions, independent of biochar amendment and is probably the result of abiotic ammonification. For the pure compost, nitrate extraction was complete after 1 h, while from biochar-amended composts, up to 30% of total nitrate extracted was only released during subsequent extraction steps. The loamy soil released 70% of its total nitrate amount in subsequent extractions, the biochar-amended soil 58%. However, biochar amendment doubled the amount of total extractable nitrate. Thus, biochar nitrate capture can be a relevant contribution to the overall nitrate retention in agroecosystems. Our results also indicate that the total nitrate amount in biochar amended soils and composts may frequently be underestimated. Furthermore, biochars could prevent nitrate loss from agroecosystems and may be developed into slow-release fertilizers to reduce global N fertilizer demands.


Assuntos
Carvão Vegetal/química , Nitratos/análise , Nitratos/metabolismo , Solo/química , Compostos de Amônio/análise , Fertilizantes/análise , Peróxido de Hidrogênio/química , Nitratos/isolamento & purificação , Esterilização , Temperatura , Fatores de Tempo
9.
J Environ Qual ; 45(4): 1196-204, 2016 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-27380067

RESUMO

Biochar (BC) has been shown to increase the potential for N retention in agricultural soils. However, the form of N retained and its strength of retention are poorly understood. Here, we examined if the N retained could be readily extractable by standard methods and if the amount of N retained varied with BC field ageing. We investigated soil and field-aged BC (BC) particles of a field experiment (sandy soil amended with BC at 0, 15, and 30 t ha) under two watering regimes (irrigated and rain-fed). Throughout the study, greater nitrate than ammonium retention was observed with BC addition in topsoil (0-15 cm). Subsoil (15-30 cm) nitrate concentrations were reduced in BC treatments, indicating reduced nitrate leaching (standard 2 mol L KCl method). The mineral-N release of picked BC particles was examined with different methods: standard 2 mol L KCl extraction; repeated (10×) extraction in 2 mol L KCl at 22 ± 2°C and 80°C (M); electro-ultrafiltration (M); repeated water + KCl long-term shaking (M); and M plus one repeated shaking at 80°C (M). Nitrate amounts captured by BC particles were several-fold greater than those in the BC-amended soil. Compared with M, standard 2 mol L KCl or electro-ultrafiltration extractions retrieved only 13 and 30% of the total extractable nitrates, respectively. Our results suggest that "nitrate capture" by BC may reduce nitrate leaching in the field and that the inefficiency of standard extraction methods deserves closer research attention to decipher mechanisms for reactive N management.


Assuntos
Carvão Vegetal , Nitratos , Solo , Poluentes do Solo
11.
PLoS One ; 10(7): e0131665, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-26147694

RESUMO

BACKGROUND: Effects of elevated atmospheric CO2 concentrations on plant growth and associated C cycling have intensively been studied, but less is known about effects on the fluxes of radiatively active trace gases other than CO2. Net soil-atmosphere CH4 fluxes are determined by the balance of soil microbially-driven methane (CH4) oxidation and methanogenesis, and both might change under elevated CO2. METHODS AND RESULTS: Here, we studied CH4 dynamics in a permanent grassland exposed to elevated CO2 for 14 years. Soil-atmosphere fluxes of CH4 were measured using large static chambers, over a period of four years. The ecosystem was a net sink for atmospheric CH4 for most of the time except summer to fall when net CH4 emissions occurred. We did not detect any elevated CO2 effects on CH4 fluxes, but emissions were difficult to quantify due to their discontinuous nature, most likely because of ebullition from the saturated zone. Potential methanotrophic activity, determined by incubation of fresh sieved soil under standardized conditions, also did not reveal any effect of the CO2 treatment. Finally, we determined the spatial micro-distribution of methanotrophic activity at less than 5× atmospheric (10 ppm) and elevated (10000 ppm) CH4 concentrations, using a novel auto-radiographic technique. These analyses indicated that domains of net CH4 assimilation were distributed throughout the analyzed top 15 cm of soils, with no dependence on CH4 concentration or CO2 treatment. CONCLUSIONS: Our investigations suggest that elevated CO2 exerts no or only minor effects on CH4 fluxes in the type of ecosystem we studied, at least as long as soil moisture differences are small or absent as was the case here. The autoradiographic analyses further indicate that the spatial niche of CH4 oxidation does not shift in response to CO2 enrichment or CH4 concentration, and that the same type of methanotrophs may oxidize CH4 from atmospheric and soil-internal sources.


Assuntos
Ar/análise , Dióxido de Carbono/química , Euryarchaeota/metabolismo , Metano/metabolismo , Solo/química , Microbiologia do Solo
12.
Sci Rep ; 5: 11080, 2015 Jun 09.
Artigo em Inglês | MEDLINE | ID: mdl-26057083

RESUMO

Soil amendment with pyrogenic carbon (biochar) is discussed as strategy to improve soil fertility to enable economic plus environmental benefits. In temperate soils, however, the use of pure biochar mostly has moderately-negative to -positive yield effects. Here we demonstrate that co-composting considerably promoted biochars' positive effects, largely by nitrate (nutrient) capture and delivery. In a full-factorial growth study with Chenopodium quinoa, biomass yield increased up to 305% in a sandy-poor soil amended with 2% (w/w) co-composted biochar (BC(comp)). Conversely, addition of 2% (w/w) untreated biochar (BC(pure)) decreased the biomass to 60% of the control. Growth-promoting (BC(comp)) as well as growth-reducing (BC(pure)) effects were more pronounced at lower nutrient-supply levels. Electro-ultra filtration and sequential biochar-particle washing revealed that co-composted biochar was nutrient-enriched, particularly with the anions nitrate and phosphate. The captured nitrate in BC(comp) was (1) only partly detectable with standard methods, (2) largely protected against leaching, (3) partly plant-available, and (4) did not stimulate N2O emissions. We hypothesize that surface ageing plus non-conventional ion-water bonding in micro- and nano-pores promoted nitrate capture in biochar particles. Amending (N-rich) bio-waste with biochar may enhance its agronomic value and reduce nutrient losses from bio-wastes and agricultural soils.


Assuntos
Carvão Vegetal , Chenopodium/crescimento & desenvolvimento , Nitratos/metabolismo , Biomassa
13.
Glob Chang Biol ; 21(8): 3152-68, 2015 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-25846203

RESUMO

A key part of the uncertainty in terrestrial feedbacks on climate change is related to how and to what extent nitrogen (N) availability constrains the stimulation of terrestrial productivity by elevated CO2 (eCO2 ), and whether or not this constraint will become stronger over time. We explored the ecosystem-scale relationship between responses of plant productivity and N acquisition to eCO2 in free-air CO2 enrichment (FACE) experiments in grassland, cropland and forest ecosystems and found that: (i) in all three ecosystem types, this relationship was positive, linear and strong (r(2) = 0.68), but exhibited a negative intercept such that plant N acquisition was decreased by 10% when eCO2 caused neutral or modest changes in productivity. As the ecosystems were markedly N limited, plants with minimal productivity responses to eCO2 likely acquired less N than ambient CO2 -grown counterparts because access was decreased, and not because demand was lower. (ii) Plant N concentration was lower under eCO2 , and this decrease was independent of the presence or magnitude of eCO2 -induced productivity enhancement, refuting the long-held hypothesis that this effect results from growth dilution. (iii) Effects of eCO2 on productivity and N acquisition did not diminish over time, while the typical eCO2 -induced decrease in plant N concentration did. Our results suggest that, at the decennial timescale covered by FACE studies, N limitation of eCO2 -induced terrestrial productivity enhancement is associated with negative effects of eCO2 on plant N acquisition rather than with growth dilution of plant N or processes leading to progressive N limitation.


Assuntos
Dióxido de Carbono/farmacologia , Nitrogênio/metabolismo , Plantas/metabolismo , Agricultura , Mudança Climática , Ecossistema , Florestas , Poaceae
14.
J Agric Food Chem ; 61(39): 9401-11, 2013 Oct 02.
Artigo em Inglês | MEDLINE | ID: mdl-24004410

RESUMO

Effects of biomass types (bark mulch versus sugar beet pulp) and carbonization processing conditions (temperature, residence time, and phase of reaction medium) on the chemical characteristics of hydrochars were examined by elemental analysis, solid-state ¹³C NMR, and chemical and biochemical oxygen demand measurements. Bark hydrochars were more aromatic than sugar beet hydrochars produced under the same processing conditions. The presence of lignin in bark led to a much lower biochemical oxygen demand (BOD) of bark than sugar beet and increasing trends of BOD after carbonization. Compared with those prepared at 200 °C, 250 °C hydrochars were more aromatic and depleted of carbohydrates. Longer residence time (20 versus 3 h) at 250 °C resulted in the enrichment of nonprotonated aromatic carbons. Both bark and sugar beet pulp underwent deeper carbonization during water hydrothermal carbonization than during steam hydrothermal carbonization (200 °C, 3 h) in terms of more abundant aromatic C but less carbohydrate C in water hydrochars.


Assuntos
Beta vulgaris/química , Carboidratos/química , Fertilizantes/análise , Jardinagem/métodos , Casca de Planta/química , Raízes de Plantas/química , Solo/química , Carboidratos/análise , Fertilizantes/economia , Indústria de Processamento de Alimentos/economia , Agricultura Florestal/economia , Jardinagem/economia , Temperatura Alta , Resíduos Industriais/análise , Resíduos Industriais/economia , Esterco , Odorantes , Oxigênio/química , Vapor , Fatores de Tempo , Água/química
15.
Ecotoxicol Environ Saf ; 97: 59-66, 2013 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-23921220

RESUMO

Biochar is discussed as an option for climate change mitigation via C sequestration and may promote sustainable resource efficiency. Large-scale field trials and commercial business with char materials have already started. Therefore char materials have to be assessed for toxic compounds. We tested genotoxic effects of different hydrochars and biochars with the Tradescantia micronucleus test. For this purpose chromosomal aberrations in pollen cells of Tradescantia in the form of micronuclei were evaluated microscopically after defined exposition to extracts from char materials. Hydrochars from hydrothermal carbonization mostly exhibited significantly negative results. Additional germination experiments with hydrochar showed total germination inhibition at additions above five percent v/v in comparison to biochar. However, biological post-treatment of previously toxic hydrochar was successful and toxic effects were eliminated completely. Some post-treated hydrochars even showed growth stimulating effects. Our results clearly demonstrate the necessity of risk assessment with bioindicators. The chosen tests procedures can contribute to biochar and hydrochar characterization for safe application.


Assuntos
Carvão Vegetal/toxicidade , Tradescantia/efeitos dos fármacos , Carvão Vegetal/química , Germinação/efeitos dos fármacos , Concentração de Íons de Hidrogênio , Testes de Mutagenicidade , Medição de Risco
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA