RESUMO
Physical reservoir computing leverages the dynamical properties of complex physical systems to process information efficiently, significantly reducing training efforts and energy consumption. Magnetic skyrmions, topological spin textures, are promising candidates for reservoir computing systems due to their enhanced stability, non-linear interactions and low-power manipulation. Traditional spin-based reservoir computing has been limited to quasi-static detection or real-world data must be rescaled to the intrinsic timescale of the reservoir. We address this challenge by time-multiplexed skyrmion reservoir computing, that allows for aligning the reservoir's intrinsic timescales to real-world temporal patterns. Using millisecond-scale hand gestures recorded with Range-Doppler radar, we feed voltage excitations directly into our device and detect the skyrmion trajectory evolution. This method scales down to the nanometer level and demonstrates competitive or superior performance compared to energy-intensive software-based neural networks. Our hardware approach's key advantage is its ability to integrate sensor data in real-time without temporal rescaling, enabling numerous applications.
RESUMO
Magnetic skyrmions, topologically-stabilized spin textures that emerge in magnetic systems, have garnered considerable interest due to a variety of electromagnetic responses that are governed by the topology. The topology that creates a microscopic gyrotropic force also causes detrimental effects, such as the skyrmion Hall effect, which is a well-studied phenomenon highlighting the influence of topology on the deterministic dynamics and drift motion. Furthermore, the gyrotropic force is anticipated to have a substantial impact on stochastic diffusive motion; however, the predicted repercussions have yet to be demonstrated, even qualitatively. Here we demonstrate enhanced thermally-activated diffusive motion of skyrmions in a specifically designed synthetic antiferromagnet. Suppressing the effective gyrotropic force by tuning the angular momentum compensation leads to a more than 10 times enhanced diffusion coefficient compared to that of ferromagnetic skyrmions. Consequently, our findings not only demonstrate the gyro-force dependence of the diffusion coefficient but also enable ultimately energy-efficient unconventional stochastic computing.
RESUMO
Spintronic terahertz emitters promise terahertz sources with an unmatched broad frequency bandwidth that are easy to fabricate and operate, and therefore easy to scale at low cost. However, current experiments and proofs of concept rely on free-space ultrafast pump lasers and rather complex benchtop setups. This contrasts with the requirements of widespread industrial applications, where robust, compact, and safe designs are needed. To meet these requirements, we present a novel fiber-tip spintronic terahertz emitter solution that allows spintronic terahertz systems to be fully fiber-coupled. Using single-mode fiber waveguiding, the newly developed solution naturally leads to a simple and straightforward terahertz near-field imaging system with a 90%-10% knife-edge-response spatial resolution of 30 µm.
RESUMO
Chiral molecules have the potential for creating new magnetic devices by locally manipulating the magnetic properties of metallic surfaces. When chiral polypeptides chemisorb onto ferromagnets, they can induce magnetization locally by spin exchange interactions. However, direct imaging of surface magnetization changes induced by chiral molecules was not previously realized. Here, we use magneto-optical Kerr microscopy to image domains in thin films and show that chiral polypeptides strongly pin domains, increasing the coercive field locally. In our study, we also observe a rotation of the easy magnetic axis toward the out-of-plane, depending on the sample's domain size and the adsorption area. These findings show the potential of chiral molecules to control and manipulate magnetization and open new avenues for future research on the relationship between chirality and magnetization.
RESUMO
The recently discovered interlayer Dzyaloshinskii-Moriya interaction (IL-DMI) in multilayers with perpendicular magnetic anisotropy favors canting of spins in the in-plane direction. It could thus stabilize intriguing spin textures such as Hopfions. A key requirement for nucleation is to control the IL-DMI. Therefore, we investigate the influence of an electric current on a synthetic antiferromagnet with growth-induced IL-DMI. The IL-DMI is quantified by using out-of-plane hysteresis loops of the anomalous Hall effect while applying a static in-plane magnetic field at varied azimuthal angles. We observe a shift in the azimuthal dependence with an increasing current, which we conclude to originate from the additional in-plane symmetry breaking introduced by the current flow. Fitting the angular dependence, we demonstrate the presence of an additive current-induced term that linearly increases the IL-DMI in the direction of current flow. This opens the possibility of easily manipulating 3D spin textures by currents.
RESUMO
Thermally induced skyrmion dynamics, as well as skyrmion pinning effects, in thin films have attracted significant interest. While pinning poses challenges in deterministic skyrmion devices and slows down skyrmion diffusion, for applications in non-conventional computing, both pinning of an appropriate strength and skyrmion diffusion speed are key. Here, periodic field excitations are employed to realize an increase of the skyrmion diffusion by more than two orders of magnitude. Amplifying the excitation, a drastic reduction of the effective skyrmion pinning, is reported, and a transition from pinning-dominated diffusive hopping to dynamics approaching free diffusion is observed. By tailoring the field oscillation frequency and amplitude, a continuous tuning of the effective pinning and skyrmion dynamics is demonstrated, which is a key asset and enabler for non-conventional computing applications. It is found that the periodic excitations additionally allow stabilization of skyrmions at different sizes for field values that are inaccessible in static systems, opening up new approaches to ultrafast skyrmion motion by transiently exciting moving skyrmions.
RESUMO
The advent of X-ray free-electron lasers (XFELs) has revolutionized fundamental science, from atomic to condensed matter physics, from chemistry to biology, giving researchers access to X-rays with unprecedented brightness, coherence and pulse duration. All XFEL facilities built until recently provided X-ray pulses at a relatively low repetition rate, with limited data statistics. Here, results from the first megahertz-repetition-rate X-ray scattering experiments at the Spectroscopy and Coherent Scattering (SCS) instrument of the European XFEL are presented. The experimental capabilities that the SCS instrument offers, resulting from the operation at megahertz repetition rates and the availability of the novel DSSC 2D imaging detector, are illustrated. Time-resolved magnetic X-ray scattering and holographic imaging experiments in solid state samples were chosen as representative, providing an ideal test-bed for operation at megahertz rates. Our results are relevant and applicable to any other non-destructive XFEL experiments in the soft X-ray range.
Assuntos
Holografia , Lasers , Raios X , RadiografiaRESUMO
Reservoir computing (RC) has been considered as one of the key computational principles beyond von-Neumann computing. Magnetic skyrmions, topological particle-like spin textures in magnetic films are particularly promising for implementing RC, since they respond strongly nonlinearly to external stimuli and feature inherent multiscale dynamics. However, despite several theoretical proposals that exist for skyrmion reservoir computing, experimental realizations have been elusive until now. Here, we propose and experimentally demonstrate a conceptually new approach to skyrmion RC that leverages the thermally activated diffusive motion of skyrmions. By confining the electrically gated and thermal skyrmion motion, we find that already a single skyrmion in a confined geometry suffices to realize nonlinearly separable functions, which we demonstrate for the XOR gate along with all other Boolean logic gate operations. Besides this universality, the reservoir computing concept ensures low training costs and ultra-low power operation with current densities orders of magnitude smaller than those used in existing spintronic reservoir computing demonstrations. Our proposed concept is robust against device imperfections and can be readily extended by linking multiple confined geometries and/or by including more skyrmions in the reservoir, suggesting high potential for scalable and low-energy reservoir computing.
RESUMO
Current-induced spin-orbit torques (SOTs) allow for the efficient electrical manipulation of magnetism in spintronic devices. Engineering the SOT efficiency is a key goal that is pursued by maximizing the active interfacial spin accumulation or modulating the nonequilibrium spin density that builds up through the spin Hall and inverse spin galvanic effects. Regardless of the origin, the fundamental requirement for the generation of the current-induced torques is a net spin accumulation. We report on the large enhancement of the SOT efficiency in thulium iron garnet (TmIG)/Pt by capping with a CuO_{x} layer. Considering the weak spin-orbit coupling (SOC) of CuO_{x}, these surprising findings likely result from an orbital current generated at the interface between CuO_{x} and Pt, which is injected into the Pt layer and converted into a spin current by strong SOC. The converted spin current decays across the Pt layer and exerts a "nonlocal" torque on TmIG. This additional torque leads to a maximum colossal enhancement of the SOT efficiency of a factor 16 for 1.5 nm of Pt at room temperature, thus opening a path to increase torques while at the same time offering insights into the underlying physics of orbital transport, which has so far been elusive.