Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Antioxidants (Basel) ; 13(6)2024 Jun 19.
Artigo em Inglês | MEDLINE | ID: mdl-38929180

RESUMO

With the global increase in hyperglycemia and hyperlipidemia, there is an urgent need to explore dietary interventions targeting the inhibition of dipeptidyl peptidase-IV (DPP-IV) and lipid digestion and absorption. This study investigated how Lactobacillus rhamnosus GG (LGG) affects various aspects of black goji berry (BGB) (Lycium ruthenicum Murr.) juice, including changes in physicochemical and functional properties, as well as microbiological and sensory attributes. Throughout the fermentation process with 2.5-10% (w/v) BGB, significantly improved probiotic viability, lactic acid production, and decreased sugar content. While total flavonoids increase, anthocyanins decrease, with no discernible change in antioxidant activities. Metabolite profiling reveals elevated phenolic compounds post-fermentation. Regarding the inhibition of lipid digestion and absorption, fermented BGB exhibits improved bile acid binding, and disrupted cholesterol micellization by approximately threefold compared to non-fermented BGB, while also increasing pancreatic lipase inhibitory activity. Furthermore, a decrease in cholesterol uptake was observed in Caco-2 cells treated with fermented BGB (0.5 mg/mL), with a maximum reduction of 16.94%. Fermented BGB also shows more potent DPP-IV inhibition. Sensory attributes are significantly improved in fermented BGB samples. These findings highlight the potential of BGB as a bioactive resource and a promising non-dairy carrier for LGG, enhancing its anti-hyperglycemic and anti-hyperlipidemic properties.

2.
Food Funct ; 15(7): 3640-3652, 2024 Apr 02.
Artigo em Inglês | MEDLINE | ID: mdl-38482709

RESUMO

This study aimed to investigate the effects of gac fruit juice and its probiotic fermentation (FGJ) utilizing Lactobacillus paracasei on the modulation of the gut microbiota and the production of short-chain fatty acids (SCFAs). We conducted a comparison between FGJ, non-fermented gac juice (GJ), and control samples through in vitro digestion and colonic fermentation using the human gut microbiota derived from fecal inoculum. Our findings revealed that both GJ and FGJ led to an increase in the viability of Lactobacilli, with FGJ exhibiting even higher levels compared to the control. The results from the 16S rDNA amplicon sequencing technique showed that both GJ and FGJ exerted positive impact on the gut microbiota by promoting beneficial bacteria, notably Lactobacillus mucosae and Bacteroides vulgatus. Additionally, both GJ and FGJ significantly elevated the levels of SCFAs, particularly acetic, propionic, and n-butyric acids, as well as lactic acid, in comparison to the control. Notably, FGJ exhibited a more pronounced effect on the gut microbiota compared to GJ. This was evident in its ability to enhance species richness, reduce the Firmicutes to Bacteroidetes (F/B) ratio, promote Akkermansia, and inhibit pathogenic Escherichia coli. Moreover, FGJ displayed enhanced production of SCFAs, especially acetic and lactic acids, in contrast to GJ. Our findings suggest that the probiotic fermentation of gac fruit enhances its functional attributes in promoting a balanced gut microbiota. This beverage demonstrates potential as a functional food with potential advantages for sustaining intestinal health.


Assuntos
Microbioma Gastrointestinal , Humanos , Sucos de Frutas e Vegetais , Fermentação , Ácidos Graxos Voláteis/farmacologia , Frutas
3.
Foods ; 12(23)2023 Nov 27.
Artigo em Inglês | MEDLINE | ID: mdl-38231752

RESUMO

The current study aimed to explore the effects of fermenting five different pomelo cultivars using Lacticaseibacillus paracasei on various physicochemical, phytochemical, and organoleptic attributes. Fermentation led to an increase in viable lactic acid bacteria count (8.80-9.28 log cfu/mL), organic acids, total polyphenols, and flavonoids, resulting in improved antioxidant activity, bile acid binding, cholesterol micellization disruption, and inhibition of pancreatic lipase activity. Additionally, some cultivars displayed higher levels of naringin, naringenin, and hesperetin after fermentation. The levels of volatile compounds were elevated after fermentation. The bitterness and overall acceptability scores were improved in the fermented samples of the Kao Numpueng cultivar. The principal component analysis (PCA) revealed that the Tubtim Siam cultivar demonstrated the highest functionality and health-related benefits among all fermented pomelos. Overall, the study suggests that pomelo exhibits potential as a valuable resource for creating a dairy-free probiotic drink enriched with bioactive phytochemical compounds and beneficial functional attributes.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA