Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 12 de 12
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Blood Adv ; 7(22): 7017-7027, 2023 11 28.
Artigo em Inglês | MEDLINE | ID: mdl-37792826

RESUMO

The importance of genetic diagnosis for patients with hemophilia has been recently demonstrated. However, the pathological variant cannot be identified in some patients. Here, we aimed to identify the pathogenic intronic variant causing hemophilia A using induced pluripotent stem cells (iPSCs) from patients and genome editing. We analyzed siblings with moderate hemophilia A and without abnormalities in the F8 exon. Next-generation sequencing of the entire F8 revealed 23 common intron variants. Variant effect predictor software indicated that the deep intronic variant at c.5220-8563A>G (intron 14) might act as a splicing acceptor. We developed iPSCs from patients and used genome editing to insert the elongation factor 1α promoter to express F8 messenger RNA (mRNA). Then, we confirmed the existence of abnormal F8 mRNA derived from aberrant splicing, resulting in a premature terminal codon as well as a significant reduction in F8 mRNA in iPSCs due to nonsense-mediated RNA decay. Gene repair by genome editing recovered whole F8 mRNA expression. Introduction of the intron variant into human B-domain-deleted F8 complementary DNA suppressed factor VIII (FVIII) activity and produced abnormal FVIII lacking the light chain in HEK293 cells. Furthermore, genome editing of the intron variant restored FVIII production. In summary, we have directly proven that the deep intronic variant in F8 results in aberrant splicing, leading to abnormal mRNA and nonsense-mediated RNA decay. Additionally, genome editing targeting the variant restored F8 mRNA and FVIII production. Our approach could be useful not only for identifying causal variants but also for verifying the therapeutic effect of personalized genome editing.


Assuntos
Hemofilia A , Hemostáticos , Células-Tronco Pluripotentes Induzidas , Humanos , Hemofilia A/genética , Hemofilia A/terapia , Hemofilia A/diagnóstico , Edição de Genes , Células-Tronco Pluripotentes Induzidas/metabolismo , Células HEK293 , RNA Mensageiro/genética , RNA Mensageiro/metabolismo
2.
Mol Ther Methods Clin Dev ; 30: 502-514, 2023 Sep 14.
Artigo em Inglês | MEDLINE | ID: mdl-37693948

RESUMO

Gene therapy using adeno-associated virus (AAV)-based vectors has become a realistic therapeutic option for hemophilia. We examined the potential of a novel engineered liver-tropic AAV3B-based vector, AAV.GT5, for hemophilia B gene therapy. In vitro transduction with AAV.GT5 in human hepatocytes was more than 100 times higher than with AAV-Spark100, another bioengineered vector used in a clinical trial. However, liver transduction following intravenous injection of these vectors was similar in mice with a humanized liver and in macaques. This discrepancy was due to the low recovery and short half-life of AAV.GT5 in blood, depending on the positive charge of the heparin-binding site in the capsid. Bypassing systemic clearance with the intra-hepatic vascular administration of AAV.GT5, but not AAV-Spark100, enhanced liver transduction in pigs and macaques. AAV.GT5 did not develop neutralizing antibodies (NAbs) in two of four animals, while AAV-Spark100 induced serotype-specific NAbs in all macaques tested (4 of 4). The NAbs produced after AAV-Spark100 administration were relatively serotype specific, and challenge with AAV.GT5 through the hepatic artery successfully boosted liver transduction in one animal previously administered AAV-Spark100. In summary, AAV.GT5 showed different vector kinetics and NAb induction compared with AAV-Spark100, and intra-hepatic vascular administration may minimize the vector dose required and vector dissemination.

3.
Commun Med (Lond) ; 3(1): 56, 2023 Apr 19.
Artigo em Inglês | MEDLINE | ID: mdl-37076593

RESUMO

BACKGROUND: Base editing via CRISPR-Cas9 has garnered attention as a method for correcting disease-specific mutations without causing double-strand breaks, thereby avoiding large deletions and translocations in the host chromosome. However, its reliance on the protospacer adjacent motif (PAM) can limit its use. We aimed to restore a disease mutation in a patient with severe hemophilia B using base editing with SpCas9-NG, a modified Cas9 with the board PAM flexibility. METHODS: We generated induced pluripotent stem cells (iPSCs) from a patient with hemophilia B (c.947T>C; I316T) and established HEK293 cells and knock-in mice expressing the patient's F9 cDNA. We transduced the cytidine base editor (C>T), including the nickase version of Cas9 (wild-type SpCas9 or SpCas9-NG), into the HEK293 cells and knock-in mice through plasmid transfection and an adeno-associated virus vector, respectively. RESULTS: Here we demonstrate the broad PAM flexibility of SpCas9-NG near the mutation site. The base-editing approach using SpCas9-NG but not wild-type SpCas9 successfully converts C to T at the mutation in the iPSCs. Gene-corrected iPSCs differentiate into hepatocyte-like cells in vitro and express substantial levels of F9 mRNA after subrenal capsule transplantation into immunodeficient mice. Additionally, SpCas9-NG-mediated base editing corrects the mutation in both HEK293 cells and knock-in mice, thereby restoring the production of the coagulation factor. CONCLUSION: A base-editing approach utilizing the broad PAM flexibility of SpCas9-NG can provide a solution for the treatment of genetic diseases, including hemophilia B.


In patients with hemophilia B, the blood does not clot properly, leading to excessive bruising and bleeding. Hemophilia B is caused by an error in a gene called coagulation factor IX (F9). To treat patients with hemophilia B, we might be able to use a technology called CRISPR-Cas9 to edit and correct this genetic error, restoring factor IX function and improving clotting. Here, we test a specific CRISPR-Cas9 approach in cells and animals. We show that we are able to correct the genetic error in F9 in cells isolated from a patient with severe hemophilia B. We also show that we can fix the error in mice and that this increases levels of factor IX in the blood of the mice. With further testing, this gene-editing approach may be a viable therapy for patients with hemophilia B or similar genetic disorders.

4.
J Gene Med ; 25(8): e3505, 2023 08.
Artigo em Inglês | MEDLINE | ID: mdl-36972408

RESUMO

BACKGROUND: Intravenous administration of adeno-associated virus (AAV) vectors is a promising gene therapy approach for monogenic diseases. However, re-administration of the same AAV serotype is impossible because of the induction of anti-AAV neutralizing antibodies (NAbs). Here, we examined the feasibility of re-administrating AAV vector serotypes different from the initial AAV vector serotype. METHODS: Liver-targeting AAV3B, AAV5, and AAV8 vectors were intravenously injected in C57BL/6 mice, and the emergence of NAbs and the transduction efficacy following re-administration were evaluated. RESULTS: For all serotypes, re-administration of the same serotype was not possible. Although the highest neutralizing activity of NAb was induced by AAV5, anti-AAV5 NAbs did not react with other serotypes, resulting in successful re-administration with the other serotypes. AAV5 re-administration was also successful in all mice treated with AAV3B and AAV8. Effective secondary administration of AAV3B and AAV8 was observed in most mice initially administrated AAV8 and AAV3B, respectively. However, few mice developed NAbs cross-reacting with the other serotypes, especially those with close sequence homology. CONCLUSIONS: In summary, AAV vector administration induced NAbs relatively specific to the administrated serotype. Secondary administration of AAVs targeting liver transduction could be successfully achieved by switching AAV serotypes in mice.


Assuntos
Dependovirus , Vetores Genéticos , Animais , Camundongos , Dependovirus/genética , Vetores Genéticos/genética , Camundongos Endogâmicos C57BL , Fígado , Anticorpos Neutralizantes
5.
Mol Ther Methods Clin Dev ; 27: 404-414, 2022 Dec 08.
Artigo em Inglês | MEDLINE | ID: mdl-36381300

RESUMO

Adeno-associated virus (AAV) vectors are promising modalities of gene therapy to address unmet medical needs. However, anti-AAV neutralizing antibodies (NAbs) hamper the vector-mediated therapeutic effect. Therefore, NAb prevalence in the target population is vital in designing clinical trials with AAV vectors. Hence, updating the seroprevalence of anti-AAV NAbs, herein we analyzed sera from 100 healthy individuals and 216 hemophiliacs in Japan. In both groups, the overall seroprevalence against various AAV serotypes was 20%-30%, and the ratio of the NAb-positive population increased with age. The seroprevalence did not differ between healthy participants and hemophiliacs and was not biased by the concomitant blood-borne viral infections. The high neutralizing activity, which strongly inhibits the transduction with all serotypes in vitro, was mostly found in people in their 60s or of older age. The multivariate analysis suggested that "60s or older age" was the only independent factor related to the high titer of NAbs. Conversely, a large proportion of younger hemophiliacs was seronegative, rendering them eligible for AAV-mediated gene therapy in Japan. Compared with our previous study, the peak of seroprevalences has shifted to older populations, indicating that natural AAV exposure in the elderly occurred in their youth but not during the last decade.

6.
Mol Ther Methods Clin Dev ; 22: 162-171, 2021 Sep 10.
Artigo em Inglês | MEDLINE | ID: mdl-34485602

RESUMO

Most gene therapy clinical trials that systemically administered adeno-associated virus (AAV) vector enrolled only patients without anti-AAV-neutralizing antibodies. However, laboratory tests to measure neutralizing antibodies varied among clinical trials and have not been standardized. In this study, we attempted to improve the sensitivity and reproducibility of a cell-based assay to detect neutralizing antibodies and to determine the detection threshold to predict treatment efficacy. Application of the secreted type of NanoLuc and AAV receptor-expressing cells reduced the multiplicity of infection (MOI) for AAV transduction and improved the sensitivity to detect neutralizing antibodies with a low coefficient of variation, whereas the detection threshold could not be improved by the reduction of MOI to <100. After human immunoglobulin administration into mice at various doses, treatment with high-dose AAV8 vector enabled evasion of the inhibitory effect of neutralizing antibodies. Conversely, gene transduction was slightly influenced in the mice treated with low-dose AAV8 vector, even when neutralizing antibodies were determined to be negative in the assay. In conclusion, we developed a reliable and sensitive cell-based assay to measure neutralizing antibodies against AAV and found that the appropriate MOI to detect marginal neutralizing antibodies was 100. Other factors, including noninhibitory antibodies, marginally influence in vivo transduction at low vector doses.

7.
J Immunol ; 204(8): 2033-2042, 2020 04 15.
Artigo em Inglês | MEDLINE | ID: mdl-32144162

RESUMO

IκBζ (encoded by the Nfkbiz) is a member of the nuclear IκB family, which is involved in the expression of secondary response genes based on signals from TLR or IL-1R. ST2L, an IL-33R, is a member of the IL-1R family and abundantly expressed in tissue-resident immune cells, such as mast cells and innate lymphoid cells; however, its downstream signaling pathway remains unelucidated. In this study, we examined the role of IκBζ in ST2L-mediated cytokine and chemokine production in mast cells. Murine bone marrow cells were differentiated ex vivo into bone marrow-derived mast cells (BMMCs). The treatment of BMMCs with IL-33 transiently induced robust IκBζ expression. Of the 40 cytokines and chemokines examined using a cytokine and chemokine array, the concentrations of IL-6, IL-13, CCL2, CCL3, and TNF-α in the supernatant were augmented by IL-33. The deletion of IκBζ in BMMCs resulted in a significant reduction of the production of these mediators and the expression of their mRNA. NF-κB p50 but not p65 translocated to the nucleus by IL-33 and was not affected by the deletion of IκBζ. However, induction of IκBζ and the resultant cytokine and chemokine productions were significantly inhibited by pretreatment with an NF-κB inhibitor. The deletion of IκBζ did not affect the phosphorylation of ERK, p38 MAPK, or JNK by IL-33, and the treatment with inhibitors of these mitogen-activated kinases failed to abolish the expression of Nfkbiz Our findings suggest that IκBζ augments IL-33-dependent cytokine and chemokine production in BMMCs through the action of NF-κB.


Assuntos
Citocinas/biossíntese , Proteínas I-kappa B/metabolismo , Interleucina-33/imunologia , Mastócitos/metabolismo , Proteínas Adaptadoras de Transdução de Sinal/deficiência , Proteínas Adaptadoras de Transdução de Sinal/imunologia , Animais , Citocinas/imunologia , Proteínas I-kappa B/deficiência , Mastócitos/imunologia , Camundongos , Camundongos Knockout , Camundongos Transgênicos , NF-kappa B/metabolismo
8.
Int J Hematol ; 111(6): 786-794, 2020 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-32180119

RESUMO

Platelet function tests utilizing agonists or patient serum are generally performed to assess platelet activation ex vivo. However, inter-individual differences in platelet reactivity and donor requirements make it difficult to standardize these tests. Here, we established a megakaryoblastic cell line for the conventional assessment of platelet activation. We first compared intracellular signaling pathways using CD32 crosslinking in several megakaryoblastic cell lines, including CMK, UT-7/TPO, and MEG-01 cells. We confirmed that CD32 was abundantly expressed on the cell surface, and that intracellular calcium mobilization and tyrosine phosphorylation occurred after CD32 crosslinking. We next employed GCaMP6s, a highly sensitive calcium indicator, to facilitate the detection of calcium mobilization by transducing CMK and MEG-01 cells with a plasmid harboring GCaMP6s under the control of the human elongation factor-1α promoter. Cells that stably expressed GCaMP6s emitted enhanced green fluorescent protein fluorescence in response to intracellular calcium mobilization following agonist stimulation in the absence of pretreatment. In summary, we have established megakaryoblastic cell lines that mimic platelets by mobilizing intracellular calcium in response to several agonists. These cell lines can potentially be utilized in high-throughput screening assays for the discovery of new antiplatelet drugs or diagnosis of disorders caused by platelet-activating substances.


Assuntos
Plaquetas/metabolismo , Plaquetas/fisiologia , Sinalização do Cálcio , Cálcio/metabolismo , Células Progenitoras de Megacariócitos , Ativação Plaquetária , Linhagem Celular , Descoberta de Drogas , Avaliação Pré-Clínica de Medicamentos , Proteínas de Fluorescência Verde/metabolismo , Humanos , Células Progenitoras de Megacariócitos/metabolismo , Fosfatidilinositóis/metabolismo , Inibidores da Agregação Plaquetária , Receptores de IgG/metabolismo
9.
RNA ; 25(1): 90-104, 2019 01.
Artigo em Inglês | MEDLINE | ID: mdl-30337458

RESUMO

The translation of capsid proteins of Plautia stali intestine virus (PSIV), encoded in its second open reading frame (ORF2), is directed by an internal ribosomal entry site (IRES) located in the intergenic region (IGR). Owing to the specific properties of PSIV IGR in terms of nucleotide length and frame organization, capsid proteins are also translated via stop codon readthrough in mammalian cultured cells as an extension of translation from the first ORF (ORF1) and IGR. To delineate stop codon readthrough in PSIV, we determined requirements of cis-acting elements through a molecular genetics approach applied in both cell-free translation systems and cultured cells. Mutants with deletions from the 3' end of IGR revealed that almost none of the sequence of IGR is necessary for readthrough, apart from the 5'-terminal codon CUA. Nucleotide replacement of this CUA trinucleotide or change of the termination codon from UGA severely impaired readthrough. Chemical mapping of the IGR region of the most active 3' deletion mutant indicated that this defined minimal element UGACUA, together with its downstream sequence, adopts a single-stranded conformation. Stimulatory activities of downstream RNA structures identified to date in gammaretrovirus, coltivirus, and alphavirus were not detected in the context of PSIV IGR, despite the presence of structures for IRES. To our knowledge, PSIV IGR is the first example of stop codon readthrough that is solely defined by the local hexamer sequence, even though the sequence is adjacent to an established region of RNA secondary/tertiary structures.


Assuntos
Códon de Terminação , Dicistroviridae/genética , RNA Viral/genética , Animais , Sequência de Bases , Células COS , Sistema Livre de Células , Chlorocebus aethiops , DNA Intergênico , Células HEK293 , Células HeLa , Humanos , Sítios Internos de Entrada Ribossomal , Conformação de Ácido Nucleico , Biossíntese de Proteínas , RNA Viral/química , Deleção de Sequência
10.
Mol Cell ; 35(2): 181-90, 2009 Jul 31.
Artigo em Inglês | MEDLINE | ID: mdl-19647515

RESUMO

Translation initiation of the second ORF of insect dicistrovirus RNA depends on an internal ribosomal entry site (IRES) in its intergenic region (IGR) and is exceptional in using a codon other than AUG and in not using the canonical initiator methionine tRNA. Studies in vitro suggest that pseudoknot I (PKI) immediately preceding the initiation codon occupies the ribosomal P site and that an elongator tRNA initiates translation from the ribosomal A site. Using dicistronic reporters carrying mutations in the initiation codon of the second ORF and mutant elongator or initiator tRNAs capable of reading these codons, we provide direct evidence for initiation from the A site in mammalian cells and, under certain conditions, also from the P site. Initiation from the A but not the P site requires PKI. Thus, PKI structure may be dynamic, and optimal IGR IRES-mediated translation of dicistroviral RNAs may require trans-acting factors to stabilize PKI.


Assuntos
Picornaviridae/genética , Biossíntese de Proteínas/fisiologia , Ribossomos/química , Códon de Iniciação , Códon de Terminação , Genes Reporter , Humanos , Luciferases/genética , Luciferases/metabolismo , Mutação , Fases de Leitura Aberta , RNA de Transferência/genética , RNA de Transferência/metabolismo , RNA de Transferência/fisiologia , RNA de Transferência de Metionina , Ribossomos/fisiologia , Transfecção , Regiões não Traduzidas , Proteínas Virais/genética , Proteínas Virais/metabolismo
11.
J Virol ; 77(19): 10479-87, 2003 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-12970433

RESUMO

Nucleotides (nt) 108 to 742 of an infectious cDNA clone of poliovirus (PV) Mahoney strain, including the corresponding region of the internal ribosome entry site (IRES), was replaced by nt 28 to 710 of hepatitis C virus (HCV) cDNA corresponding to the whole HCV IRES. A chimeric PV (2A-369) was generated by transfecting mammalian cells with an RNA transcribed in vitro from the cDNA. To examine replicating capacity of virus 2A-369 in the brain and liver of a mouse model for poliomyelitis, a new mouse model (MPVRTg25-61) that is transgenic for human PV receptor (hPVR; CD155) was generated in order to obtain a higher expression level of hPVR in the liver than those of hPVRTg mouse lines generated by us so far. The transgene used was constructed by combining a putative regulatory region of the mouse PVR homolog and the whole structural region of the hPVR gene. Virus 2A-369 replicated well in the liver of MPVRTg25-61 but not in the brain, whereas control Mahoney virus replicated well both in the liver and in the brain. The data suggest that the HCV IRES works more efficiently in the liver than in the brain and that PV IRES works well both in the liver and in the brain. The results support the notion that tissue-specific activity of IRES may be reflected in tissue tropism of a virus whose specific translation initiation is driven by IRES, that is, an IRES-dependent virus tropism.


Assuntos
Hepacivirus/genética , Proteínas de Membrana , Poliovirus/fisiologia , Receptores Virais/genética , Ribossomos/metabolismo , Replicação Viral , Animais , Antígenos Virais/análise , Encéfalo/virologia , Moléculas de Adesão Celular , Quimera , Células HeLa , Humanos , Fígado/virologia , Glicoproteínas de Membrana/genética , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Endogâmicos ICR , Camundongos Transgênicos , Nectinas , Especificidade de Órgãos , RNA Viral/biossíntese
12.
J Gen Virol ; 80 ( Pt 9): 2319-2327, 1999 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-10501483

RESUMO

Translation initiation of poliovirus and hepatitis C virus (HCV) RNA occurs by entry of ribosomes to the internal RNA sequence, called the internal ribosomal entry site (IRES). Both IRES bind to the La protein and are thought to require the protein for their translation initiation activity, although they are greatly different in both the primary and predicted secondary structures. To compare the La protein requirement for these IRES, we took advantage of I-RNA from the yeast Saccharomyces cerevisiae, which has been reported to bind to La protein and block poliovirus IRES-mediated translation initiation. In a cell-free translation system prepared from HeLa cells, yeast I-RNA inhibited translation initiation on poliovirus RNA as expected, but did not significantly inhibit translation initiation on HCV RNA. However, the translation initiation directed by either IRES was apparently inhibited by I-RNA in rabbit reticulocyte lysates, in which La protein is limiting. I-RNA-mediated inhibition of HCV IRES-dependent translation in rabbit reticulocyte lysates was reversed by exogenous addition of purified recombinant La protein of smaller amounts than necessary to reverse poliovirus IRES-dependent translation. These results suggest that HCV IRES requires lower concentrations of La protein for its function than does poliovirus IRES. Immunofluorescence studies showed that HCV infection appeared not to affect the subcellular localization of La protein, which exists mainly in the nucleus, although La protein redistributed to the cytoplasm after poliovirus infection. The data are compatible with the low requirement of La protein for HCV IRES activity.


Assuntos
Autoantígenos/fisiologia , Hepacivirus/genética , Poliovirus/genética , Biossíntese de Proteínas , RNA Viral/metabolismo , Ribonucleoproteínas/fisiologia , Ribossomos/metabolismo , Animais , Células HeLa , Humanos , Coelhos , Antígeno SS-B
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA