Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Acta Crystallogr B Struct Sci Cryst Eng Mater ; 78(Pt 1): 20-32, 2022 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-35129117

RESUMO

Synthetic and naturally occurring forms of tricopper orthotellurate, CuII3TeVIO6 (the mineral mcalpineite) have been investigated by 3D electron diffraction (3D ED), X-ray powder diffraction (XRPD), Raman and infrared (IR) spectroscopic measurements. As a result of the diffraction analyses, CuII3TeVIO6 is shown to occur in two polytypes. The higher-symmetric CuII3TeVIO6-1C polytype is cubic, space group Ia3, with a = 9.537 (1) Šand V = 867.4 (3) Å3 as reported in previous studies. The 1C polytype is a well characterized structure consisting of alternating layers of CuIIO6 octahedra and both CuIIO6 and TeVIO6 octahedra in a patchwork arrangement. The structure of the lower-symmetric orthorhombic CuII3TeVIO6-2O polytype was determined for the first time in this study by 3D ED and verified by Rietveld refinement. The 2O polytype crystallizes in space group Pcca, with a = 9.745 (3) Å, b = 9.749 (2) Å, c = 9.771 (2) Šand V = 928.3 (4) Å3. High-precision XRPD data were also collected on CuII3TeVIO6-2O to verify the lower-symmetric structure by performing a Rietveld refinement. The resultant structure is identical to that determined by 3D ED, with unit-cell parameters a = 9.56157 (19) Å, b = 9.55853 (11) Å, c = 9.62891 (15) Šand V = 880.03 (2) Å3. The lower symmetry of the 2O polytype is a consequence of a different cation ordering arrangement, which involves the movement of every second CuIIO6 and TeVIO6 octahedral layer by (1/4, 1/4, 0), leading to an offset of TeVIO6 and CuIIO6 octahedra in every second layer giving an ABAB* stacking arrangement. Syntheses of CuII3TeVIO6 showed that low-temperature (473 K) hydrothermal conditions generally produce the 2O polytype. XRPD measurements in combination with Raman spectroscopic analysis showed that most natural mcalpineite is the orthorhombic 2O polytype. Both XRPD and Raman spectroscopy measurements may be used to differentiate between the two polytypes of CuII3TeVIO6. In Raman spectroscopy, CuII3TeVIO6-1C has a single strong band around 730 cm-1, whereas CuII3TeVIO6-2O shows a broad double maximum with bands centred around 692 and 742 cm-1.


Assuntos
Elétrons , Análise Espectral Raman , Difração de Pó , Espectrofotometria Infravermelho , Difração de Raios X
2.
Acta Crystallogr B Struct Sci Cryst Eng Mater ; 74(Pt 4): 362-369, 2018 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-30141421

RESUMO

Nollmotzite (IMA2017-100), Mg[UV(UVIO2)2F3O4](H2O)4, is a new uranium oxide fluoride mineral found in the Clara mine, Black Forest Mountains, Germany. Electron microprobe analysis provided the empirical formula (Mg1.06Cu0.02)Σ1.08[UV(UVIO2)2O3.85F3.15][(H2O)3.69(OH)0.31]Σ4.00 based on three U and 15 O + F atoms per formula unit. Nollmotzite is monoclinic, space group Cm, with a = 7.1015 (12) Å, b = 11.7489 (17) Å, c = 8.1954 (14) Å, ß = 98.087 (14)°, V = 676.98 (19) Å3 and Z = 2. The crystal structure [twinned by reticular merohedry; refined to R = 0.0369 with GoF = 1.09 for 1527 unique observed reflections, I > 3σ(I)] is based upon [UV(UVIO2)2F3O4]2- sheets of ß-U3O8 topology and contains an interlayer with MgF2(H2O)4 octahedra. Adjacent sheets are linked through F-Mg-F bonds, as well as via hydrogen bonds. The presence of fluorine and pentavalent uranium in the structure of nollmotzite has potentially important implications for the safe disposal of nuclear waste.

3.
Geochim Cosmochim Acta ; 74(2): 574-583, 2010 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-20161499

RESUMO

Three bacterial strains from the genus Shewanella were used to examine the influence of specific bacteria on the products of dissimilatory iron reduction. Strains CN32, MR-4 and W3-18-1 were incubated with HFO (hydrous ferric oxide) as the terminal electron acceptor and lactate as the organic carbon and energy source. Mineral products of iron reduction were analyzed using X-ray powder diffraction, electron microscopy, coulometry and susceptometry. Under identical nutrient loadings, iron reduction rates for strains CN32 and W3-18-1 were similar, and about twice as fast as MR-4. Qualitative and quantitative assessment of mineralized end products (secondary minerals) indicated that different products were formed during experiments with similar reduction rates but different strains (CN32 and W3-18-1), and similar products were formed during experiments with different iron reduction rates and different strains (CN32 and MR-4). The major product of iron reduction by strains CN32 and MR-4 was magnetite, while for W3-18-1 it was a mixture of magnetite and iron carbonate hydroxide hydrate (green rust), a precursor to fougerite. Another notable difference was that strains CN32 and MR-4 converted all of the starting ferric iron material into magnetite, while W3-18-1 did not convert most of the Fe(3+) into a recognizable crystalline material. Biofilm formation is more robust in W3-18-1 than in the other two strains used in this study. The differences in mineralization may be an indicator that EPS (or another cellular product from W3-18-1) may interfere with the crystallization of magnetite or facilitate formation of green rust. These results suggest that the relative abundance of mineral end products and the relative distribution of these products are strongly dependent on the bacterial species or strain catalyzing iron reduction.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA