Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Iran J Basic Med Sci ; 24(3): 391-399, 2021 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-33995951

RESUMO

OBJECTIVES: Many patients die due to vascular, gastrointestinal lumen problems, and coronary heart diseases. Synthetic vessels that are made of biodegradable-nanofiber polymers have significant properties such as proper biodegradability and efficient physical properties such as high strength and flexibility. Some of the best options for supporting cells in soft tissue engineering and design are applications of thermoplastic polyurethane polymer in the venous tissue. In this study, the first nanoparticle-reinforced polymeric artificial prosthesis was designed and tested to be used in the human body. MATERIALS AND METHODS: In this study, artificial gastrointestinal lumen were fabricated and prepared using a 3D printer. To improve cell adhesion, wettability properties and mechanical stability of elastin biopolymer with magnetic nanoparticles (MNPs) as well as single-walled carbon nanotubes (SWCNT) were prepared as separate filaments. MNPs were made in 5-7 mm sizes and then examined for mechanical, biological, and hyperthermia properties. Then, the obtained results of the gastrointestinal lumen were simulated using the Abaqus software package with a three-branch. The results were evaluated by X-ray diffraction (XRD) and scanning electron microscopy (SEM) for morphology and phase analysis. RESULTS: The obtained results of the designed vessels showed remarkable improvement in mechanical properties of the SWCNT vessels and hyperthermia properties of the vessels containing the MNPs. The results of computational fluid dynamics (CFD) analysis showed that the artificial vessels had lower shear stress at the output. CONCLUSION: Five-mm MNP containing vessels showed noticeable chemical and biological properties along with ideal magnetic results in the treatment of thrombosis and vascular obstruction.

2.
Iran J Med Sci ; 45(4): 233-249, 2020 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-32801413

RESUMO

Nearly every 100 years, humans collectively face a pandemic crisis. After the Spanish flu, now the world is in the grip of coronavirus disease 2019 (COVID-19). First detected in 2019 in the Chinese city of Wuhan, COVID-19 causes severe acute respiratory distress syndrome. Despite the initial evidence indicating a zoonotic origin, the contagion is now known to primarily spread from person to person through respiratory droplets. The precautionary measures recommended by the scientific community to halt the fast transmission of the disease failed to prevent this contagious disease from becoming a pandemic for a whole host of reasons. After an incubation period of about two days to two weeks, a spectrum of clinical manifestations can be seen in individuals afflicted by COVID-19: from an asymptomatic condition that can spread the virus in the environment, to a mild/moderate disease with cold/flu-like symptoms, to deteriorated conditions that need hospitalization and intensive care unit management, and then a fatal respiratory distress syndrome that becomes refractory to oxygenation. Several diagnostic modalities have been advocated and evaluated; however, in some cases, diagnosis is made on the clinical picture in order not to lose time. A consensus on what constitutes special treatment for COVID-19 has yet to emerge. Alongside conservative and supportive care, some potential drugs have been recommended and a considerable number of investigations are ongoing in this regard.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA