Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 80
Filtrar
1.
Front Immunol ; 15: 1357360, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38994357

RESUMO

Background: The impact of previous SARS-CoV-2 infection on the systemic immune response during tuberculosis (TB) disease has not been explored. Methods: An observational, cross-sectional cohort was established to evaluate the systemic immune response in persons with pulmonary tuberculosis with or without previous SARS-CoV-2 infection. Those participants were recruited in an outpatient referral clinic in Rio de Janeiro, Brazil. TB was defined as a positive Xpert-MTB/RIF Ultra and/or a positive culture of Mycobacterium tuberculosis from sputum. Stored plasma was used to perform specific serology to identify previous SARS-CoV-2 infection (TB/Prex-SCoV-2 group) and confirm the non- infection of the tuberculosis group (TB group). Plasmatic cytokine/chemokine/growth factor profiling was performed using Luminex technology. Tuberculosis severity was assessed by clinical and laboratory parameters. Participants from TB group (4.55%) and TB/Prex-SCoV-2 (0.00%) received the complete COVID-19 vaccination. Results: Among 35 participants with pulmonary TB, 22 were classified as TB/Prex-SCoV-2. The parameters associated with TB severity, together with hematologic and biochemical data were similar between the TB and TB/Prex-SCoV-2 groups. Among the signs and symptoms, fever and dyspnea were significantly more frequent in the TB group than the TB/Prex-SCoV-2 group (p < 0,05). A signature based on lower amount of plasma EGF, G-CSF, GM-CSF, IFN-α2, IL-12(p70), IL-13, IL-15, IL-17, IL-1ß, IL-5, IL-7, and TNF-ß was observed in the TB/Prex-SCoV-2 group. In contrast, MIP-1ß was significantly higher in the TB/Prex-SCoV-2 group than the TB group. Conclusion: TB patients previously infected with SARS-CoV-2 had an immunomodulation that was associated with lower plasma concentrations of soluble factors associated with systemic inflammation. This signature was associated with a lower frequency of symptoms such as fever and dyspnea but did not reflect significant differences in TB severity parameters observed at baseline.


Assuntos
COVID-19 , Citocinas , SARS-CoV-2 , Tuberculose Pulmonar , Humanos , COVID-19/imunologia , COVID-19/sangue , Masculino , Feminino , Estudos Transversais , Adulto , Pessoa de Meia-Idade , SARS-CoV-2/imunologia , Tuberculose Pulmonar/imunologia , Tuberculose Pulmonar/sangue , Citocinas/sangue , Citocinas/imunologia , Brasil/epidemiologia
2.
Pathogens ; 13(4)2024 Apr 12.
Artigo em Inglês | MEDLINE | ID: mdl-38668273

RESUMO

Growing evidence points to the presence of differentially culturable tubercle bacteria (DCTB) in clinical specimens from individuals with active tuberculosis (TB) disease. These bacteria are unable to grow on solid media but can resuscitate in liquid media. Given the epidemiological success of certain clinical genotype families of Mycobacterium tuberculosis, we hypothesize that different strains may have distinct mechanisms of adaptation and tolerance. We used an in vitro carbon starvation model to determine the propensity of strains from lineages 2 and 4 that included the Beijing and LAM families respectively, to generate DCTB. Beijing strains were associated with a greater propensity to produce DCTB compared to LAM strains. Furthermore, LAM strains required culture filtrate (CF) for resuscitation whilst starved Beijing strains were not dependent on CF. Moreover, Beijing strains showed improved resuscitation with cognate CF, suggesting the presence of unique growth stimulatory molecules in this family. Analysis of starved Beijing and LAM strains showed longer cells, which with resuscitation were restored to a shorter length. Cell wall staining with fluorescent D-amino acids identified strain-specific incorporation patterns, indicating that cell surface remodeling during resuscitation was distinct between clinical strains. Collectively, our data demonstrate that M. tuberculosis clinical strains from different genotype lineages have differential propensities to generate DCTB, which may have implications for TB treatment success.

3.
Elife ; 132024 Apr 19.
Artigo em Inglês | MEDLINE | ID: mdl-38639995

RESUMO

Mechanisms by which Mycobacterium tuberculosis (Mtb) evades pathogen recognition receptor activation during infection may offer insights for the development of improved tuberculosis (TB) vaccines. Whilst Mtb elicits NOD-2 activation through host recognition of its peptidoglycan-derived muramyl dipeptide (MDP), it masks the endogenous NOD-1 ligand through amidation of glutamate at the second position in peptidoglycan side-chains. As the current BCG vaccine is derived from pathogenic mycobacteria, a similar situation prevails. To alleviate this masking ability and to potentially improve efficacy of the BCG vaccine, we used CRISPRi to inhibit expression of the essential enzyme pair, MurT-GatD, implicated in amidation of peptidoglycan side-chains. We demonstrate that depletion of these enzymes results in reduced growth, cell wall defects, increased susceptibility to antibiotics, altered spatial localization of new peptidoglycan and increased NOD-1 expression in macrophages. In cell culture experiments, training of a human monocyte cell line with this recombinant BCG yielded improved control of Mtb growth. In the murine model of TB infection, we demonstrate that depletion of MurT-GatD in BCG, which is expected to unmask the D-glutamate diaminopimelate (iE-DAP) NOD-1 ligand, yields superior prevention of TB disease compared to the standard BCG vaccine. In vitro and in vivo experiments in this study demonstrate the feasibility of gene regulation platforms such as CRISPRi to alter antigen presentation in BCG in a bespoke manner that tunes immunity towards more effective protection against TB disease.


Tuberculosis is the leading cause of death from an infectious disease worldwide, partially due to a lack of access to drug treatments in certain countries where the disease is common. The only available tuberculosis vaccine ­ known as the BCG vaccine ­ is useful for preventing cases in young children, but is ineffective in teenagers and adults. So, there is a need to develop new vaccines that offer better, and longer lasting, durable protection in people of all ages. During an infection, our immune system recognizes markers known as PAMPs on the surface of bacteria, viruses or other disease-causing pathogens. The recognition of PAMPs by the immune system enables the body to distinguish foreign invading organisms from its own cells and tissues, thus triggering a response that fights the infection. If the body encounters the infectious agent again in the future, the immune system is able to quickly recognize and eliminate it before it can cause disease. Vaccines protect us by mimicking the appearance of the pathogen to trigger the first immune response without causing the illness. The BCG vaccine contains live bacteria that are closely related to the bacterium responsible for tuberculosis called Mycobacterium tuberculosis. Both M. tuberculosis and the live bacteria used in the BCG vaccine are able to hide an important PAMP, known as the NOD-1 ligand, from the immune system, making it harder for the body to detect them. The NOD-1 ligand forms part of the bacterial cell wall and modifying the BCG bacterium so it cannot disguise this PAMP may lead to a new, more effective vaccine. To investigate this possibility, Shaku et al. used a gene editing approach to develop a modified version of the BCG bacterium which is unable to hide its NOD-1 ligand when treated with a specific drug. Immune cells trained with the modified BCG vaccine were more effective at controlling the growth of M. tuberculosis than macrophages trained using the original vaccine. Furthermore, mice vaccinated with the modified BCG vaccine were better able to limit M. tuberculosis growth in their lungs than mice that had received the original vaccine. These findings offer a new candidate vaccine in the fight against tuberculosis. Further studies will be needed to modify the vaccine for use in humans. More broadly, this work demonstrates that gene editing can be used to expose a specific PAMP present in a live vaccine. This may help develop more effective vaccines for other diseases in the future.


Assuntos
Vacina BCG , Mycobacterium tuberculosis , Peptidoglicano , Tuberculose , Animais , Peptidoglicano/metabolismo , Camundongos , Vacina BCG/imunologia , Mycobacterium tuberculosis/imunologia , Tuberculose/prevenção & controle , Tuberculose/imunologia , Tuberculose/microbiologia , Humanos , Camundongos Endogâmicos C57BL , Macrófagos/imunologia , Macrófagos/microbiologia , Macrófagos/metabolismo , Feminino , Proteína Adaptadora de Sinalização NOD1/metabolismo , Proteína Adaptadora de Sinalização NOD1/genética , Modelos Animais de Doenças , Proteínas de Bactérias/metabolismo , Proteínas de Bactérias/genética
4.
Front Cell Infect Microbiol ; 13: 1283328, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-38130775

RESUMO

Ongoing SARS-CoV-2 infections are driven by the emergence of various variants, with differential propensities to escape immune containment. Single nucleotide polymorphisms (SNPs) in the RNA genome result in altered protein structures and when these changes occur in the S-gene, encoding the spike protein, the ability of the virus to penetrate host cells to initiate an infection can be significantly altered. As a result, vaccine efficacy and prior immunity may be diminished, potentially leading to new waves of infection. Early detection of SARS-CoV-2 variants using a rapid and scalable approach will be paramount for continued monitoring of new infections. In this study, we developed minor groove-binding (MGB) probe-based qPCR assays targeted to specific SNPs in the S-gene, which are present in variants of concern (VOC), namely the E484K, N501Y, G446S and D405N mutations. A total of 95 archived SARS-CoV-2 positive clinical specimens collected in Johannesburg, South Africa between February 2021 and March 2022 were assessed using these qPCR assays. To independently confirm SNP detection, Sanger sequencing of the relevant region in the S-gene were performed. Where a PCR product could be generated and sequenced, qPCR assays were 100% concordant highlighting the robustness of the approach. These assays, and the approach described, offer the opportunity for easy detection and scaling of targeted detection of variant-defining SNPs in the clinical setting.


Assuntos
COVID-19 , SARS-CoV-2 , Humanos , SARS-CoV-2/genética , COVID-19/diagnóstico , Polimorfismo de Nucleotídeo Único , África do Sul , Mutação
5.
Crit Rev Microbiol ; : 1-20, 2023 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-37909097

RESUMO

Traditionally, molecular mechanisms of pathogenesis for infectious agents were studied in cell culture or animal models but have limitations on the extent to which the resulting data reflect natural infection in humans. The COVID-19 pandemic has highlighted the urgent need to rapidly develop laboratory models that enable the study of host-pathogen interactions, particularly the relative efficacy of preventive measures. Recently, human and animal ex vivo tissue challenge models have emerged as a promising avenue to study immune responses, screen potential therapies and triage vaccine candidates. This approach offers the opportunity to closely approximate human disease from the perspective of pathology and immune response. It has advantages compared to animal models which are expensive, lengthy and often require containment facilities. Herein, we summarize some recent advances in the development of ex vivo tissue challenge models for COVID-19, HIV-1 and other pathogens. We focus on the contribution of these models to enhancing knowledge of host-pathogen interactions, immune modulation, and their value in testing therapeutic agents. We further highlight the advantages and limitations of using ex vivo challenge models and briefly summarize how the use of organoids provides a useful advancement over current approaches. Collectively, these developments have enormous potential for the study of infectious diseases.

6.
J Mol Diagn ; 25(12): 907-912, 2023 12.
Artigo em Inglês | MEDLINE | ID: mdl-37863192

RESUMO

During the early stages of the 2019 coronavirus disease (COVID-19) pandemic in South Africa, one of many challenges included availability of control material for laboratory proficiency testing programs. Proficiency testing control material using live severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) or RNA extracted from cell culture was either biohazardous or costly, particularly in resource-limited settings. This study reports the development and application of a noninfectious SARS-CoV-2 biomimetic Mycobacterium smegmatis strain that mimics a positive result in the GeneXpert SARS-CoV-2 Xpert Xpress cartridge. Nucleotide sequences located in genes encoding the RNA-dependent RNA polymerase, the nucleocapsid, and the envelope proteins were used. The resulting biomimetic strain was prepared as a positive proficiency testing control and distributed in South Africa for verification of laboratories before their testing of clinical specimens. Between April and December 2020, a total of 151 GeneXpert instruments with 2532 modules were verified to bring COVID-19 mass testing in South Africa online. An average concordance of 98.6% was noted in the entire laboratory network, allowing identification of false-positive/false-negative results and instrument errors. This noninfectious, easily scalable proficiency testing control material became available within 2 months after the start of the pandemic in South Africa and represents a useful approach to consider for other diseases and future pandemics.


Assuntos
COVID-19 , SARS-CoV-2 , Humanos , SARS-CoV-2/genética , COVID-19/diagnóstico , COVID-19/epidemiologia , Pandemias , Teste para COVID-19 , Técnicas de Laboratório Clínico/métodos , Biomimética
7.
Microbiol Resour Announc ; 12(10): e0068423, 2023 Oct 19.
Artigo em Inglês | MEDLINE | ID: mdl-37732803

RESUMO

Azrael100, a cluster V siphoviral mycobacteriophage, was isolated from a garden in Johannesburg, South Africa. It can infect and lyse Mycobacterium smegmatis mc2155. The double-stranded DNA genome contains 78,063 base pairs with a GC content of 56.9%, with 141 predicted open reading frames, 23 tRNAs, and one tmRNA.

8.
Front Cell Infect Microbiol ; 13: 1186191, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37743867

RESUMO

Introduction: Oral and/or tongue swabs have demonstrated ability to detect Mycobacterium tuberculosis (Mtb) in adults with pulmonary tuberculosis (TB). Swabs provide useful alternative specimens for diagnosis of TB using molecular assays however, the diagnostic pickup by culture requires further improvement and development. Several studies identified the presence of differentially culturable tubercle bacilli (DCTB) populations in a variety of clinical specimens. These organisms do not grow in routine laboratory media and require growth factors in the form of culture filtrate (CF) from logarithmic phase cultures of Mtb H37Rv. Methods: Herein, we compared the diagnostic performance of sputum and tongue swabs using Mycobacterial Growth Indicator Tube (MGIT) assays, Auramine smear, GeneXpert and DCTB assays supplemented with or without CF. Results: From 89 eligible participants, 83 (93%), 66 (74%) and 79 (89%) were sputum positive by MGIT, smear and GeneXpert, respectively. The corresponding tongue swabs displayed a lower sensitivity with 39 (44%), 2 (2.0%) and 18 (20%) participants respectively for the same tests. We aimed to improve the diagnostic yield by utilizing DCTB assays. Sputum samples were associated with a higher positivity rate for CF-augmented DCTB at 82/89 (92%) relative to tongue swabs at 36/89 (40%). Similarly, sputum samples had a higher positivity rate for DCTB populations that were CF-independent at 64/89 (72%) relative to tongue swabs at 26/89 (29%). DCTB positivity increased significantly, relative to MGIT culture, for tongue swabs taken from HIV-positive participants. We next tested whether the use of an alternative smear stain, DMN-Trehalose, would improve diagnostic yield but noted no substantial increase. Discussion: Collectively, our data show that while tongue swabs yield lower bacterial numbers for diagnostic testing, the use of growth supplementation may improve detection of TB particularly in HIV-positive people but this requires further interrogation in larger studies.


Assuntos
Bacillus , Infecções por HIV , Lacticaseibacillus casei , Mycobacterium tuberculosis , Tuberculose Pulmonar , Adulto , Humanos , Tuberculose Pulmonar/diagnóstico , Firmicutes , Infecções por HIV/complicações , Infecções por HIV/diagnóstico
9.
PLoS One ; 18(9): e0291146, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37769001

RESUMO

With the onset of COVID-19, the development of ex vivo laboratory models became an urgent priority to study host-pathogen interactions in response to the pandemic. In this study, we aimed to establish an ex vivo mucosal tissue explant challenge model for studying SARS-CoV-2 infection and replication. Nasal or oral tissue samples were collected from eligible participants and explants generated from the tissue were infected with various SARS-CoV-2 strains, including IC19 (lineage B.1.13), Beta (lineage B.1.351) and Delta (lineage B.1.617.2). A qRT-PCR assay used to measure viral replication in the tissue explants over a 15-day period, demonstrated no replication for any viral strains tested. Based on this, the ex vivo challenge protocol was modified by reducing the viral infection time and duration of sampling. Despite these changes, viral infectivity of the nasal and oral mucosa was not improved. Since 67% of the enrolled participants were already vaccinated against SARS-CoV-2, it is possible that neutralizing antibodies in explant tissue may have prevented the establishment of infection. However, we were unable to optimize plaque assays aimed at titrating the virus in supernatants from both infected and uninfected tissue, due to limited volume of culture supernatant available at the various collection time points. Currently, the reasons for the inability of these mucosal tissue samples to support replication of SARS-CoV-2 ex vivo remains unclear and requires further investigation.


Assuntos
COVID-19 , SARS-CoV-2 , Humanos , Anticorpos Neutralizantes/farmacologia , Mucosa
10.
Front Cell Infect Microbiol ; 13: 1205829, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37692163

RESUMO

Introduction: Mycobacteria assemble a complex cell wall with cross-linked peptidoglycan (PG) which plays an essential role in maintenance of cell wall integrity and tolerance to osmotic pressure. We previously demonstrated that various hydrolytic enzymes are required to remodel PG during essential processes such as cell elongation and septal hydrolysis. Here, we explore the chemistry associated with PG cross-linking, specifically the requirement for amidation of the D-glutamate residue found in PG precursors. Methods: Synthetic fluorescent probes were used to assess PG remodelling dynamics in live bacteria. Fluorescence microscopy was used to assess protein localization in live bacteria and CRISPR-interference was used to construct targeted gene knockdown strains. Time-lapse microscopy was used to assess bacterial growth. Western blotting was used to assess protein phosphorylation. Results and discussion: In Mycobacterium smegmatis, we confirmed the essentiality for D-glutamate amidation in PG biosynthesis by labelling cells with synthetic fluorescent PG probes carrying amidation modifications. We also used CRISPRi targeted knockdown of genes encoding the MurT-GatD complex, previously implicated in D-glutamate amidation, and demonstrated that these genes are essential for mycobacterial growth. We show that MurT-rseGFP co-localizes with mRFP-GatD at the cell poles and septum, which are the sites of cell wall synthesis in mycobacteria. Furthermore, time-lapse microscopic analysis of MurT-rseGFP localization, in fluorescent D-amino acid (FDAA)-labelled mycobacterial cells during growth, demonstrated co-localization with maturing PG, suggestive of a role for PG amidation during PG remodelling and repair. Depletion of MurT and GatD caused reduced PG cross-linking and increased sensitivity to lysozyme and ß-lactam antibiotics. Cell growth inhibition was found to be the result of a shutdown of PG biosynthesis mediated by the serine/threonine protein kinase B (PknB) which senses uncross-linked PG. Collectively, these data demonstrate the essentiality of D-glutamate amidation in mycobacterial PG precursors and highlight the MurT-GatD complex as a novel drug target.


Assuntos
Amidas , Parede Celular , Ácido Glutâmico , Mycobacterium smegmatis , Peptidoglicano , Amidas/metabolismo , Ácido Glutâmico/metabolismo , Mycobacterium smegmatis/crescimento & desenvolvimento , Mycobacterium smegmatis/metabolismo , Parede Celular/química , Parede Celular/metabolismo , Carbono-Nitrogênio Ligases com Glutamina como Doadora de N-Amida/metabolismo , Proteínas de Bactérias/metabolismo , Peptidoglicano/metabolismo
11.
Lancet Infect Dis ; 23(8): e288-e300, 2023 08.
Artigo em Inglês | MEDLINE | ID: mdl-37290473

RESUMO

The COVID-19 pandemic heralded unprecedented resource mobilisation and global scientific collaboration to rapidly develop effective vaccines. Regrettably, vaccine distribution has been inequitable, particularly in Africa where manufacturing capacity remains nominal. To address this, several initiatives are underway to develop and manufacture COVID-19 vaccines in Africa. Nevertheless, diminishing demand for COVID-19 vaccines, the cost competitiveness of producing goods locally, intellectual property rights issues, and complex regulatory environments among other challenges can undermine these ventures. We outline how extending COVID-19 vaccine manufacturing in Africa to include diverse products, multiple vaccine platforms, and advanced delivery systems will ensure sustainability. Possible models, including leveraging public-academic-private partnerships to enhance success of vaccine manufacturing capacity in Africa are also discussed. Intensifying research in vaccine discovery on the continent could yield vaccines that further bolster sustainability of local production, ensuring greater pandemic preparedness in resource-constrained environments, and long-term health systems security.


Assuntos
COVID-19 , Vacinas , Humanos , Vacinas contra COVID-19 , Pandemias/prevenção & controle , COVID-19/prevenção & controle , África/epidemiologia
12.
Microbiol Resour Announc ; 12(7): e0033323, 2023 Jul 18.
Artigo em Inglês | MEDLINE | ID: mdl-37260379

RESUMO

Lopsy is a siphovirus mycobacteriophage that is capable of lytic infection in Mycobacterium smegmatis. It is classified as a subcluster B1 mycobacteriophage and was isolated from soil in Estcourt, South Africa. The 68,542-bp double-stranded DNA genome is circularly permuted, has a GC content of 66.4%, and is predicted to contain 98 genes.

13.
bioRxiv ; 2023 May 03.
Artigo em Inglês | MEDLINE | ID: mdl-37205421

RESUMO

Mechanisms by which Mycobacterium tuberculosis (Mtb) evades pathogen recognition receptor activation during infection may offer insights for the development of improved tuberculosis (TB) vaccines. Whilst Mtb elicits NOD-2 activation through host recognition of its peptidoglycan-derived muramyl dipeptide (MDP), it masks the endogenous NOD-1 ligand through amidation of glutamate at the second position in peptidoglycan sidechains. As the current BCG vaccine is derived from pathogenic mycobacteria, a similar situation prevails. To alleviate this masking ability and to potentially improve efficacy of the BCG vaccine, we used CRISPRi to inhibit expression of the essential enzyme pair, MurT-GatD, implicated in amidation of peptidoglycan sidechains. We demonstrate that depletion of these enzymes results in reduced growth, cell wall defects, increased susceptibility to antibiotics and altered spatial localization of new peptidoglycan. In cell culture experiments, training of monocytes with this recombinant BCG yielded improved control of Mtb growth. In the murine model of TB infection, we demonstrate that depletion of MurT-GatD in BCG, resulting in unmasking of the D-glutamate diaminopimelate (iE-DAP) NOD-1 ligand, yields superior prevention of TB disease compared to the standard BCG vaccine. This work demonstrates the feasibility of gene regulation platforms such as CRISPRi to alter antigen presentation in BCG in a bespoke manner that tunes immunity towards more effective protection against TB disease.

15.
Vaccines (Basel) ; 11(2)2023 Feb 02.
Artigo em Inglês | MEDLINE | ID: mdl-36851212

RESUMO

The mucosal environment of the upper respiratory tract is the first barrier of protection against SARS-CoV-2 transmission. However, the mucosal factors involved in viral transmission and potentially modulating the capacity to prevent such transmission have not fully been identified. In this pilot proteomics study, we compared mucosal and systemic compartments in a South African cohort of vaccinated and unvaccinated individuals undergoing maxillofacial surgery with previous history of COVID-19 or not. Inflammatory profiles were analyzed in plasma, nasopharyngeal swabs, and nasal and oral tissue explant cultures, using Olink and Luminex technologies. SARS-CoV-2-specific antibody levels were measured in serum and tissue explants. An increased pro-inflammatory proteomic profile was measured in the nasal compartment compared to plasma. However, IP-10 and MIG levels were higher in secretions than in nasal tissue, and the opposite was observed for TGF-ß. Nasal anti-SARS-CoV-2 spike IgG correlated with mucosal MIG expression for all participants. A further positive correlation was found with IP-10 in BioNTech/Pfizer-vaccinated individuals. Systemic levels of anti-SARS-CoV-2 spike IgG elicited by this vaccine correlated with plasma IL-10, IL-6 and HBD4. Proteomic profiles measured in mucosal tissues and secretions using combined technologies could reveal correlates of protection at the mucosal portals of viral entry.

16.
Front Cell Infect Microbiol ; 12: 1072073, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36506007

RESUMO

Tuberculosis (TB) infected individuals harbor a heterogenous population of differentially culturable tubercle bacilli (DCTB). Herein, we describe how DCTB assays using culture filtrate either containing or deficient in resuscitation promoting factors can uncover mixed infections. We demonstrate that Mycobacterium tuberculosis (Mtb) strain genotypes can be separated in DCTB assays based on their selective requirement for growth stimulatory factors. Beijing mixed infections appear to be associated with a higher bacterial load and reduced reliance on growth stimulatory factors. These data have important implications for identifying mixed infections and hetero-resistance, which in turn can affect selection of treatment regimen and establishment of transmission links.


Assuntos
Bacillus , Coinfecção , Lacticaseibacillus casei , Mycobacterium tuberculosis , Tuberculose , Humanos , Tuberculose/diagnóstico , Mycobacterium tuberculosis/genética , Firmicutes
17.
Front Cell Infect Microbiol ; 12: 1065893, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36506008

RESUMO

Culture remains the gold standard to diagnose spinal tuberculosis (STB) despite the paucibacillary nature of the disease. Current methods can take up to 42 days to yield a result, delaying the ability to rapidly detect drug resistance. Studies have demonstrated the use of supplementation with culture filtrate (CF) from an axenic culture of Mycobacterium tuberculosis (Mtb) as a source of growth factors to improve culture rates. Our objective was to test a modified culture assay, utilizing CF supplemented media (CFSM), to improve culture positivity rates for suspected STB. Twelve patients with suspected STB were assessed by conventional culture (BACTEC™ MGIT 960), GeneXpert™ and standard histopathological examination. Spinal biopsies were taken from areas of diseased vertebral tissue or abscess, predetermined from MRI. Additional biopsies were obtained to assess CFSM for improved detection and faster culture of Mtb. All cases were diagnosed as STB and treated empirically for tuberculosis based on either bacteriological evidence (GeneXpert™, MGIT and/or CFSM positive), or based on clinical presentation. 5 specimens (45.45%) were positive for Mtb DNA as detected by GeneXpert™ and 1 specimen (8.33%) was cultured using MGIT (time to detection; 18 days). CFSM was able to culture 7 specimens (58.3%), with all CFSM positive specimens yielding a culture within 14 days. Two samples were positive only using the CFSM assay pointing to additional yield for diagnostic workup. Modification of standard culture can improve detection of Mtb and reduce time to positivity in individuals with STB where culture material is a requirement.


Assuntos
Mycobacterium tuberculosis , Tuberculose da Coluna Vertebral , Humanos , Tuberculose da Coluna Vertebral/diagnóstico , Cultura Axênica , Biópsia , Meios de Cultura
18.
Front Cell Infect Microbiol ; 12: 1031775, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36467724

RESUMO

COVID-19 has resulted in nearly 598 million infections and over 6.46 million deaths since the start of the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) pandemic in 2019. The rapid onset of the pandemic, combined with the emergence of viral variants, crippled many health systems particularly from the perspective of coping with massive diagnostic loads. Shortages of diagnostic kits and capacity forced laboratories to store clinical samples resulting in huge backlogs, the effects of this on diagnostic pickup have not been fully understood. Herein, we investigated the impact of storing SARS-CoV-2 inoculated dry swabs on the detection and viability of four viral strains over a period of 7 days. Viral load, as detected by qRT-PCR, displayed no significant degradation during this time for all viral loads tested. In contrast, there was a ca. 2 log reduction in viral viability as measured by the tissue culture infectious dose (TCID) assay, with 1-3 log viable virus detected on dry swabs after 7 days. When swabs were coated with 102 viral copies of the Omicron variant, no viable virus was detected after 24 hours following storage at 4°C or room temperature. However there was no loss of PCR signal over 7 days. All four strains showed comparable growth kinetics and survival when cultured in Vero E6 cells. Our data provide information on the viability of SARS-CoV-2 on stored swabs in a clinical setting with important implications for diagnostic pickup and laboratory processing protocols. Survival after 7 days of SARS-CoV-2 strains on swabs with high viral loads may impact public health and biosafety practices in diagnostic laboratories.


Assuntos
Teste para COVID-19 , SARS-CoV-2 , Humanos , COVID-19/diagnóstico , Pandemias , SARS-CoV-2/genética , Carga Viral/métodos , Teste para COVID-19/métodos
19.
Front Cell Infect Microbiol ; 12: 943545, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36211964

RESUMO

Drug resistant tuberculosis contributes significantly to the global burden of antimicrobial resistance, often consuming a large proportion of the healthcare budget and associated resources in many endemic countries. The rapid emergence of resistance to newer tuberculosis therapies signals the need to ensure appropriate antibiotic stewardship, together with a concerted drive to develop new regimens that are active against currently circulating drug resistant strains. Herein, we highlight that the current burden of drug resistant tuberculosis is driven by a combination of ongoing transmission and the intra-patient evolution of resistance through several mechanisms. Global control of tuberculosis will require interventions that effectively address these and related aspects. Interrupting tuberculosis transmission is dependent on the availability of novel rapid diagnostics which provide accurate results, as near-patient as is possible, together with appropriate linkage to care. Contact tracing, longitudinal follow-up for symptoms and active mapping of social contacts are essential elements to curb further community-wide spread of drug resistant strains. Appropriate prophylaxis for contacts of drug resistant index cases is imperative to limit disease progression and subsequent transmission. Preventing the evolution of drug resistant strains will require the development of shorter regimens that rapidly eliminate all populations of mycobacteria, whilst concurrently limiting bacterial metabolic processes that drive drug tolerance, mutagenesis and the ultimate emergence of resistance. Drug discovery programs that specifically target bacterial genetic determinants associated with these processes will be paramount to tuberculosis eradication. In addition, the development of appropriate clinical endpoints that quantify drug tolerant organisms in sputum, such as differentially culturable/detectable tubercle bacteria is necessary to accurately assess the potential of new therapies to effectively shorten treatment duration. When combined, this holistic approach to addressing the critical problems associated with drug resistance will support delivery of quality care to patients suffering from tuberculosis and bolster efforts to eradicate this disease.


Assuntos
Mycobacterium tuberculosis , Tuberculose Resistente a Múltiplos Medicamentos , Tuberculose , Antituberculosos/farmacologia , Antituberculosos/uso terapêutico , Gerenciamento Clínico , Humanos , Mycobacterium tuberculosis/genética , Escarro , Tuberculose/diagnóstico , Tuberculose/tratamento farmacológico , Tuberculose/epidemiologia , Tuberculose Resistente a Múltiplos Medicamentos/diagnóstico , Tuberculose Resistente a Múltiplos Medicamentos/tratamento farmacológico , Tuberculose Resistente a Múltiplos Medicamentos/epidemiologia
20.
Front Cell Infect Microbiol ; 12: 949370, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36159642

RESUMO

Several studies described the presence of non-replicating, drug-tolerant differentially culturable tubercle bacteria (DCTB) in sputum from patients with active tuberculosis (TB). These organisms are unable to form colonies on agar but can be recovered in liquid media supplemented with culture filtrate as a source of growth factors. Herein, we undertook to investigate the response of DCTB during the treatment of individuals with drug-resistant TB. A cohort of 100 participants diagnosed with rifampicin-resistant TB were enrolled and prospectively followed to monitor response to therapy using routine culture and limiting dilution assays, supplemented with culture filtrate (CF) to quantify DCTB. Fifteen participants were excluded due to contamination, and of the remaining 85 participants, 29, 49, and 7 were infected with rifampicin mono-resistant (RMR), multidrug-resistant (MDR), or extremely drug-resistant (XDR) TB, respectively. Analysis of baseline sputum demonstrated that CF supplementation of limiting dilution assays detected notable amounts of DCTB. Prevalence of DCTB was not influenced by smear status or mycobacterial growth indicator tube time to positivity. CF devoid of resuscitation promoting factors (Rpfs) yielded a greater amount of DCTB in sputum from participants with MDR-TB compared with those with RMR-TB. A similar effect was noted in DCTB assays without CF supplementation, suggesting that CF is dispensable for the detection of DCTB from drug-resistant strains. The HIV status of participants, and CD4 count, did not affect the amount of DCTB recovered. During treatment with second-line drug regimens, the probability of detecting DCTB from sputum specimens in liquid media with or without CF was higher compared with colony forming units, with DCTB detected up to 16 weeks post treatment. Collectively, these data point to differences in the ability of drug-resistant strains to respond to CF and Rpfs. Our findings demonstrate the possible utility of DCTB assays to diagnose and monitor treatment response for drug-resistant TB, particularly in immune compromised individuals with low CD4 counts.


Assuntos
Mycobacterium tuberculosis , Tuberculose Resistente a Múltiplos Medicamentos , Ágar/farmacologia , Ágar/uso terapêutico , Antituberculosos/farmacologia , Antituberculosos/uso terapêutico , Humanos , Testes de Sensibilidade Microbiana , Rifampina/farmacologia , Rifampina/uso terapêutico , Escarro/microbiologia , Tuberculose Resistente a Múltiplos Medicamentos/diagnóstico , Tuberculose Resistente a Múltiplos Medicamentos/tratamento farmacológico , Tuberculose Resistente a Múltiplos Medicamentos/epidemiologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA