Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
NPJ Digit Med ; 6(1): 141, 2023 Aug 11.
Artigo em Inglês | MEDLINE | ID: mdl-37567968

RESUMO

Privacy concerns often arise as the key bottleneck for the sharing of data between consumers and data holders, particularly for sensitive data such as Electronic Health Records (EHR). This impedes the application of data analytics and ML-based innovations with tremendous potential. One promising approach for such privacy concerns is to instead use synthetic data. We propose a generative modeling framework, EHR-Safe, for generating highly realistic and privacy-preserving synthetic EHR data. EHR-Safe is based on a two-stage model that consists of sequential encoder-decoder networks and generative adversarial networks. Our innovations focus on the key challenging aspects of real-world EHR data: heterogeneity, sparsity, coexistence of numerical and categorical features with distinct characteristics, and time-varying features with highly-varying sequence lengths. Under numerous evaluations, we demonstrate that the fidelity of EHR-Safe is almost-identical with real data (<3% accuracy difference for the models trained on them) while yielding almost-ideal performance in practical privacy metrics.

2.
NPJ Digit Med ; 4(1): 146, 2021 Oct 08.
Artigo em Inglês | MEDLINE | ID: mdl-34625656

RESUMO

The COVID-19 pandemic has highlighted the global need for reliable models of disease spread. We propose an AI-augmented forecast modeling framework that provides daily predictions of the expected number of confirmed COVID-19 deaths, cases, and hospitalizations during the following 4 weeks. We present an international, prospective evaluation of our models' performance across all states and counties in the USA and prefectures in Japan. Nationally, incident mean absolute percentage error (MAPE) for predicting COVID-19 associated deaths during prospective deployment remained consistently <8% (US) and <29% (Japan), while cumulative MAPE remained <2% (US) and <10% (Japan). We show that our models perform well even during periods of considerable change in population behavior, and are robust to demographic differences across different geographic locations. We further demonstrate that our framework provides meaningful explanatory insights with the models accurately adapting to local and national policy interventions. Our framework enables counterfactual simulations, which indicate continuing Non-Pharmaceutical Interventions alongside vaccinations is essential for faster recovery from the pandemic, delaying the application of interventions has a detrimental effect, and allow exploration of the consequences of different vaccination strategies. The COVID-19 pandemic remains a global emergency. In the face of substantial challenges ahead, the approach presented here has the potential to inform critical decisions.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA