Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 53
Filtrar
1.
Plant Direct ; 7(9): e531, 2023 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-37705693

RESUMO

Infection of Arabidopsis with avirulent Pseudomonas syringae and exposure to nitrogen dioxide (NO2) both trigger hypersensitive cell death (HCD) that is characterized by the emission of bright blue-green (BG) autofluorescence under UV illumination. The aim of our current work was to identify the BG fluorescent molecules and scrutinize their biosynthesis, localization, and functions during the HCD. Compared with wild-type (WT) plants, the phenylpropanoid-deficient mutant fah1 developed normal HCD except for the absence of BG fluorescence. Ultrahigh resolution metabolomics combined with mass difference network analysis revealed that WT but not fah1 plants rapidly accumulate dehydrodimers of sinapic acid, sinapoylmalate, 5-hydroxyferulic acid, and 5-hydroxyferuloylmalate during the HCD. FAH1-dependent BG fluorescence appeared exclusively within dying cells of the upper epidermis as detected by microscopy. Saponification released dehydrodimers from cell wall polymers of WT but not fah1 plants. Collectively, our data suggest that HCD induction leads to the formation of free BG fluorescent dehydrodimers from monomeric sinapates and 5-hydroxyferulates. The formed dehydrodimers move from upper epidermis cells into the apoplast where they esterify cell wall polymers. Possible functions of phenylpropanoid dehydrodimers are discussed.

2.
ACS Chem Neurosci ; 14(17): 3035-3046, 2023 09 06.
Artigo em Inglês | MEDLINE | ID: mdl-37608584

RESUMO

Amyotrophic lateral sclerosis (ALS) is a lethal progressive neurodegenerative disease, characterized by a loss of function of upper and lower motor neurons. This study aimed to explore probable pathological alterations occurring in individuals with ALS compared to neurologically healthy controls through the analysis of cerebrospinal fluid (CSF), a medium, which directly interacts with brain parenchyma. A total of 7 ALS patients with disease-associated mutations (ATXN2, C9ORF72, FUS, SOD1, and TARDBP) and 13 controls were included in the study. Multiple analytical approaches were employed, including metabolomic and metallomics profiling, as well as genetic screening, using CSF samples obtained from the brain compartment. Data analysis involved the application of multivariate statistical methods. Advanced hyphenated selenium and redox metal (iron, copper, and manganese) speciation techniques and nontargeted Fourier transform ion cyclotron resonance mass spectrometry-based metabolomics were used for data acquisition. Nontargeted metabolomics showed reduced steroids, including sex hormones; additionally, copper and manganese species were found to be the most relevant features for ALS patients. This indicates a potential alteration of sex hormone pathways in the ALS-affected brain, as reflected in the CSF.


Assuntos
Esclerose Lateral Amiotrófica , Doenças Neurodegenerativas , Humanos , Cobre , Manganês , Metaboloma , Mutação
3.
Materials (Basel) ; 16(9)2023 May 06.
Artigo em Inglês | MEDLINE | ID: mdl-37176445

RESUMO

The primary objective of this study was to synthesize and characterize novel silicon-based silyl organic compounds in order to gain a deeper understanding of their potential applications and interactions with other compounds. Four new artificial silyl organic compounds were successfully synthesized: 1-O-(Trimethylsilyl)-2,3,4,6-tetra-O-acetyl-ß-d-glucopyranose (compound 1), 1-[(1,1-dimethylehtyl)diphenylsilyl]-1H-indole (compound 2), O-tert-butyldiphenylsilyl-(3-hydroxypropyl)oleate (compound 3), and 1-O-tert-Butyldiphenylsilyl-myo-inositol (compound 4). To thoroughly characterize these synthesized compounds, a combination of advanced mass spectrometric techniques was employed, including nanoparticle-assisted laser desorption/ionization mass spectrometry (NALDI-MS), Fourier-transform ion cyclotron resonance mass spectrometry (FT-ICR-MS), and triple quadrupole electrospray tandem mass spectrometry (QqQ ESI-MS/MS). These analytical methods enabled the accurate identification and characterization of the synthesized silyl organic compounds, providing valuable insights into their properties and potential applications. Furthermore, the electrospray ionization-Fourier transform ion cyclotron resonance-tandem mass spectrometry (ESI-FT-ICR-MS/MS) technique facilitated the proposal of fragmentation pathways for the ionized silyl organic compounds, contributing to a more comprehensive understanding of their behavior during mass spectrometric analysis. These findings suggest that mass spectrometric techniques offer a highly effective means of investigating and characterizing naturally occurring silicon-based silyl organic compounds, with potential implications for advancing research in various fields and applications in different industries.

4.
J Am Soc Mass Spectrom ; 33(12): 2203-2214, 2022 Dec 07.
Artigo em Inglês | MEDLINE | ID: mdl-36371691

RESUMO

Ultrahigh resolution mass spectrometry (UHR-MS) coupled with direct infusion (DI) electrospray ionization offers a fast solution for accurate untargeted profiling. Fourier transform ion cyclotron resonance (FT-ICR) mass spectrometers have been shown to produce a wealth of insights into complex chemical systems because they enable unambiguous molecular formula assignment even if the vast majority of signals is of unknown identity. Interlaboratory comparisons are required to apply this type of instrumentation in quality control (for food industry or pharmaceuticals), large-scale environmental studies, or clinical diagnostics. Extended comparisons employing different FT-ICR MS instruments with qualitative direct infusion analysis are scarce since the majority of detected compounds cannot be quantified. The extent to which observations can be reproduced by different laboratories remains unknown. We set up a preliminary study which encompassed a set of 17 laboratories around the globe, diverse in instrumental characteristics and applications, to analyze the same sets of extracts from commercially available standard human blood plasma and Standard Reference Material (SRM) for blood plasma (SRM1950), which were delivered at different dilutions or spiked with different concentrations of pesticides. The aim of this study was to assess the extent to which the outputs of differently tuned FT-ICR mass spectrometers, with different technical specifications, are comparable for setting the frames of a future DI-FT-ICR MS ring trial. We concluded that a cluster of five laboratories, with diverse instrumental characteristics, showed comparable and representative performance across all experiments, setting a reference to be used in a future ring trial on blood plasma.

5.
Rapid Commun Mass Spectrom ; 36(11): e9283, 2022 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-35229909

RESUMO

RATIONALE: Sugars are key molecules of life but challenging to detect via electrospray ionization mass spectrometry (ESI-MS). Unfortunately, sugars are challenging analytes for mass spectrometric methods due to their high gas-phase deprotonation energies and low gas-phase proton affinities which make them difficult to ionize in high abundance for MS detection. METHODS: Hydrogen-bond interactions in H2 PO4 - -saccharide anionic systems were studied both experimentally (via electrospray ionization Fourier transform ion cyclotron resonance mass spectrometry, ESI-FT-ICR-MS) and computationally by several sophisticated density-functional theoretical methods (DFT and DFT-D3). RESULTS: The H2 PO4 - dopant boosts the detection of sugars up to 51-times in the case of sucrose and up to 263-times for glucose (at 0.1 ppm concentration level). H2 PO4 - binds toward sugar molecules with noticeably more hydrogen bonds than the established dopant chloride Cl- does, with increasing binding energies in the order: Monosaccharides < Trisaccharides < Disaccharides. Analysis of a complex oak plant sample revealed that NH4 H2 PO4 specifically labeled a diverse set of sugar-type plant metabolites in the form of [M + H2 PO4 ]- complexes. CONCLUSIONS: We reveal the mechanism of interaction of H2 PO4 - with different sugars and glycosylated organic compounds, which significantly enhances their ionization in mass spectrometry. A computational and experimental investigation is presented. A strong correlation between the MS signal intensities of detected [M + H2 PO4 ]- anions of different saccharides and their calculated dissociation enthalpies was revealed. Thus, the variation in MS signal intensities can be very well described to a large extent by the variation in calculated saccharide affinities toward the H2 PO4 - dopant anion, showing that DFT-D3 can very well describe experimental FT-ICR-MS observations.


Assuntos
Fosfatos , Espectrometria de Massas por Ionização por Electrospray , Ânions/química , Carboidratos , Cloretos , Hidrogênio , Espectrometria de Massas por Ionização por Electrospray/métodos , Açúcares
6.
Mass Spectrom Rev ; 41(2): 338-351, 2022 03.
Artigo em Inglês | MEDLINE | ID: mdl-33521990

RESUMO

The world of Fourier-transform ion cyclotron resonance (FT-ICR) mass spectrometry has witnessed, especially in the last 30 years significant advances in many fields of science, such as electronics, magnets, new ICR cell designs, developed ICR event sequences, modern external ionization sources, and linear ion beam guides, as well as modern vacuum technology. In this review, a brief account is given focusing especially on the studies performed in Wanczek's group and ICR research laboratory at the University of Bremen. An FT-ICR mass spectrometer has been developed with a high magnetic field superconducting magnet, operating at 4.7 T. At this magnetic field, a trapping time of 13.5 h was obtained with 30% efficiency. For the tetrachloromethane molecular ion, m/z 166, a mass-resolving power m/Δm = 1.5 × 106 was measured at a pressure of 2 × 10-8 Torr. The transition from magnet sweep to frequency sweep and the application of Fourier-transform has greatly enhanced the ICR technology. External ion sources were invented and differential pumping schemes were developed for enabling ultrahigh vacuum condition for ICR detection, while guiding ions at relatively higher pressures, during their flight to the ICR cell. With the external ion source, a time-of-flight ICR tandem instrument is built. A method to measure the ion flight time and to trap the ions in the ICR cell is described. Many ICR cell characteristics such as z-axis ion ejection and coupling of radial and axial ion motions in a superposed homogeneous magnetic and inhomogeneous trapping electric field were extensively studied. Gas-phase ion-molecule reactions of several reactive inorganic compounds with a focus on phosphorous and sulfur as well as silicon chemistry were also studied in great detail. The gas-phase ion chemistry of several trifluoromethyl-reagents such as trifluoromethyltrimethylsilane and tris(trifluoromethyl)phosphine were also investigated in ICR. Dual polarities multisegmented ICR cells were invented and deeply characterized. Sophisticated ICR pulse event programs were developed to enable long-range ion-ion interactions between simultaneously trapped positive and negative ions.


Assuntos
Imãs , Supercondutividade , Análise de Fourier , Íons , Espectrometria de Massas/métodos
7.
Data Brief ; 35: 106960, 2021 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-33855135

RESUMO

An untargeted shot-gun approach is described for the ultra-high-resolution analysis of fennel proteins by Fourier transform ion cyclotron resonance mass spectrometry (FT-ICR-MS) combined with a home-made Matlab search algorithm. The first step of the proposed bioinformatic strategy was the development of a custom-made fennel protein database, starting from the well-known, on-line available, protein NCBI database, under Foeniculum Vulgare organism, consisting of 231 total proteins. Partial and redundant forms of proteins, repeatedly included in the official NCBI database under different codes, were removed. In the final custom-made database, in addition to the 92 fennel specific non-redundant proteins, 10 proteins belonging to recognized allergenic sources associated with spice-mugwort-allergy syndrome (celery, carrot, parsley, birch, and mugwort) were also included. The second step was the in-silico enzymatic digestion, performed on all the 102 proteins, to obtain a theoretical list of m/z dataset of tryptic peptides. The Matlab processing data was the third and crucial step, necessary to search for in-silico mass calculated peptide sequences in the high resolution ICR mass spectra of the digested fennel extract. The final step was based on database searching in Peptide Mass Fingerprint (PMF) mode by using the matched m/z values as input data. The PMF search results confirmed the presence of 70 proteins (61 fennel specific and 9 allergenic proteins) inside the fennel extract.

8.
Food Res Int ; 139: 109919, 2021 01.
Artigo em Inglês | MEDLINE | ID: mdl-33509486

RESUMO

A rapid shot-gun method by Fourier transform ion cyclotron resonance mass spectrometry (FT-ICR-MS) is proposed for the characterization of fennel proteins. After enzymatic digestion with trypsin, few microliters of extract were analyzed by direct infusion in positive ion mode. A custom-made non-redundant fennel-specific proteome database was derived from the well-known NCBI database; additional proteins belonging to recognized allergenic sources (celery, carrot, parsley, birch, and mugwort) were also included in our database, since patients hypersensitive to these plants could also suffer from fennel allergy. The peptide sequence of each protein from that derived list was theoretically sequenced to produce calculated m/z lists of possible m/z ions after tryptic digestions. Then, by using a home-made Matlab algorithm, those lists were matched with the experimental FT-ICR mass spectrum of the fennel peptide mixture. Finally, Peptide Mass Fingerprint searches confirmed the presence of the matched proteins inside the fennel extract with a total of 70 proteins (61 fennel specific and 9 allergenic proteins).


Assuntos
Foeniculum , Ciclotrons , Análise de Fourier , Humanos , Espectrometria de Massas , Mapeamento de Peptídeos
9.
Mol Nutr Food Res ; 64(3): e1900558, 2020 02.
Artigo em Inglês | MEDLINE | ID: mdl-31802615

RESUMO

SCOPE: Alternaria fungi are widely distributed plant pathogens infecting grains and vegetables and causing major harvest losses in the field and during postharvest storage. Besides, consumers are endangered by the formation of toxic secondary metabolites. Some of these secondary metabolites are chemically characterized as mycotoxins, but the majority of the Alternaria mycobolome still remains unknown. METHODS AND RESULTS: Fourier-transform ion cyclotron resonance mass spectrometry (FTICR-MS) and LC-MS/MS are combined for the non-targeted and targeted analysis of the metabolome of three A. alternata isolates and one A. solani isolate. Due to the ultra-high resolution of FTICR-MS, unique molecular formulae are assigned to measured m/z signals. The molecular formulae are matched to entries of the databases Antibase and Kyoto Encyclopedia of Genes and Genomes. The non-targeted analysis of the fungal extracts reveals variations in the secondary metabolite profile of A. alternata and A. solani. Differences in the biosynthesis of dibenzo-α-pyrones, perylene quinones, tentoxin, and tenuazonic acid of the A. alternata and A. solani isolates are determined applying targeted LC-MS/MS. CONCLUSION: FTICR-MS analyses reveal clear differences in the metabolic profile of the A. solani and the A. alternata isolates.


Assuntos
Alternaria/metabolismo , Espectrometria de Massas/métodos , Micotoxinas/análise , Alternaria/isolamento & purificação , Cromatografia Líquida/métodos , Metabolômica/métodos , Micotoxinas/metabolismo , Metabolismo Secundário , Espectrometria de Massas em Tandem
10.
Food Chem ; 286: 64-70, 2019 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-30827658

RESUMO

Oxidation of wine upon bottle ageing is a crucial matter of concern for the qualitative long-term storage of white wines. However, understanding the various molecular mechanisms potentially involved, which can impact the wine composition, requires that top-down analytical strategies are implemented. Here, we report the analysis of bottle aged Chardonnay wines made from the same must, but differing by the amount of SO2 initially added to the must at pressing (0 and 8 g·h L-1). Metabolomics fingerprints obtained from electrochemical simulation of oxidative reactions were obtained by coupling of either on-line or off-line electrochemical oxidation to FT-ICR-MS detection. We reveal that, whatever the electrochemical DC voltage is, wines with initial SO2 addition displayed molecular fingerprints, which remained more similar to the non-oxidized wine without initial SO2 addition. We further show that a diversity of sulfur-containing compounds appeared to be the most sensitive to oxidation, whereas nitrogen-containing compounds were mostly formed.


Assuntos
Técnicas Eletroquímicas/métodos , Metaboloma , Vinho/análise , Análise por Conglomerados , Espectrometria de Massas , Oxirredução , Óxidos de Enxofre/química
11.
PLoS One ; 13(12): e0208752, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30532185

RESUMO

The underlying mechanisms of Parkinson´s disease are not completely revealed. Especially, early diagnostic biomarkers are lacking. To characterize early pathophysiological events, research is focusing on metabolomics. In this case-control study we investigated the metabolic profile of 31 Parkinson´s disease-patients in comparison to 95 neurologically healthy controls. The investigation of metabolites in CSF was performed by a 12 Tesla SolariX Fourier transform-ion cyclotron resonance-mass spectrometer (FT-ICR-MS). Multivariate statistical analysis sorted the most important biomarkers in relation to their ability to differentiate Parkinson versus control. The affected metabolites, their connection and their conversion pathways are described by means of network analysis. The metabolic profiling by FT-ICR-MS in CSF yielded in a good group separation, giving insights into the disease mechanisms. A total number of 243 metabolites showed an affected intensity in Parkinson´s disease, whereas 15 of these metabolites seem to be the main biological contributors. The network analysis showed a connection to the tricarboxylic cycle (TCA cycle) and therefore to mitochondrial dysfunction and increased oxidative stress within mitochondria. The metabolomic analysis of CSF in Parkinson´s disease showed an association to pathways which are involved in lipid/ fatty acid metabolism, energy metabolism, glutathione metabolism and mitochondrial dysfunction.


Assuntos
Metaboloma , Doença de Parkinson/líquido cefalorraquidiano , Adulto , Idoso , Biomarcadores/líquido cefalorraquidiano , Estudos de Casos e Controles , Feminino , Humanos , Masculino , Espectrometria de Massas , Metabolômica , Pessoa de Meia-Idade
12.
Plant Physiol ; 178(1): 468-487, 2018 09.
Artigo em Inglês | MEDLINE | ID: mdl-30076223

RESUMO

Nitrogen dioxide (NO2) forms in plants under stress conditions, but little is known about its physiological functions. Here, we explored the physiological functions of NO2 in plant cells using short-term fumigation of Arabidopsis (Arabidopsis thaliana) for 1 h with 10 µL L-1 NO2. Although leaf symptoms were absent, the expression of genes related to pathogen resistance was induced. Fumigated plants developed basal disease resistance, or pattern-triggered immunity, against the necrotrophic fungus Botrytis cinerea and the hemibiotrophic bacterium Pseudomonas syringae Functional salicylic acid and jasmonic acid (JA) signaling pathways were both required for the full expression of NO2-induced resistance against B. cinerea An early peak of salicylic acid accumulation immediately after NO2 exposure was followed by a transient accumulation of oxophytodienoic acid. The simultaneous NO2-induced expression of genes involved in jasmonate biosynthesis and jasmonate catabolism resulted in the complete suppression of JA and JA-isoleucine (JA-Ile) accumulation, which was accompanied by a rise in the levels of their catabolic intermediates 12-OH-JA, 12-OH-JA-Ile, and 12-COOH-JA-Ile. NO2-treated plants emitted the volatile monoterpene α-pinene and the sesquiterpene longifolene (syn. junipene), which could function in signaling or direct defense against pathogens. NO2-triggered B. cinerea resistance was dependent on enhanced early callose deposition and CYTOCHROME P450 79B2 (CYP79B2), CYP79B3, and PHYTOALEXIN DEFICIENT3 gene functions but independent of camalexin, CYP81F2, and 4-OH-indol-3-ylmethylglucosinolate derivatives. In sum, exogenous NO2 triggers basal pathogen resistance, pointing to a possible role for endogenous NO2 in defense signaling. Additionally, this study revealed the involvement of jasmonate catabolism and volatiles in pathogen immunity.


Assuntos
Arabidopsis/genética , Resistência à Doença/efeitos dos fármacos , Resistência à Doença/genética , Dióxido de Nitrogênio/farmacologia , Doenças das Plantas/genética , Arabidopsis/metabolismo , Arabidopsis/microbiologia , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Botrytis/fisiologia , Ciclopentanos/metabolismo , Sistema Enzimático do Citocromo P-450/genética , Sistema Enzimático do Citocromo P-450/metabolismo , Regulação da Expressão Gênica de Plantas/efeitos dos fármacos , Interações Hospedeiro-Patógeno/efeitos dos fármacos , Oxidantes Fotoquímicos/farmacologia , Oxilipinas/metabolismo , Doenças das Plantas/microbiologia , Folhas de Planta/genética , Folhas de Planta/metabolismo , Folhas de Planta/microbiologia , Pseudomonas syringae/fisiologia , Ácido Salicílico/metabolismo , Fatores de Tempo
13.
J Mol Model ; 24(4): 106, 2018 Mar 27.
Artigo em Inglês | MEDLINE | ID: mdl-29589173

RESUMO

Dihydroxymagnesium carboxylates [(OH)2MgO2CR] were probed for decarboxylation on a theoretical level, by utilizing both Møller-Plesset perturbation theory (MP2) and density functional theory (B3LYP-DFT) computations. This study is connected to the question of whether this recently introduced, astrobiologically relevant chemical class may form Grignard-type reagent molecules. To extract trends for a broad molecular mass range, different linear alkyl chain lengths between C4 and C11 were computed. The forward energy barrier for decarboxylation reactions increases linearly as a function of the ligand's chain length. Decarboxylation-type fragmentations of these organomagnesium compounds seem to be improbable in non-catalytic, low energetic environments. A high forward energy barrier (EMP2 > 55 kcal mol-1) towards a described transition state restricts the release of CO2. Nevertheless, we propose the release of CO2 on a theoretical level, as been revealed via an intramolecular nucleophilic attack mechanism. Once the challenging transition state for decarboxylation is overcome, a stable Mg-C bond is formed. These mechanistic insights were gained by help of natural bond orbital analysis. The Cα atom (first carbon atom in the ligand chain attached to the carboxyl group) is thought to prefer binding towards the electrophilic magnesium coordination center, rather than towards the electrophilic CO2-carbon atom. Additionally, the putatively formed Grignard-type OH-bearing product molecules possess a more polarized Mg-C bond in comparison to RMgCl species. Therefore, carbanion formation from OH-bearing Grignard-type molecules is made feasible for triggering C-C bond formation reactions. Graphical abstract This study asks whether recently introduced, astrobiologically dihydroxymagnesium carboxylates form Grignard-type reagent molecules via decarboxylative fragmentation.

14.
Front Chem ; 6: 29, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29520358

RESUMO

Whisky can be described as a complex matrix integrating the chemical history from the fermented cereals, the wooden barrels, the specific distillery processes, aging, and environmental factors. In this study, using Fourier transform ion cyclotron resonance mass spectrometry (FT-ICR-MS) and liquid chromatography coupled with tandem mass spectrometry (LC-MS/MS), we analyzed 150 whisky samples from 49 different distilleries, 7 countries, and ranging from 1 day new make spirit to 43 years of maturation with different types of barrel. Chemometrics revealed the unexpected impact of the wood history on the distillate's composition during barrel aging, regardless of the whisky origin. Flavonols, oligolignols, and fatty acids are examples of important chemical signatures for Bourbon casks, whereas a high number of polyphenol glycosides, including for instance quercetin-glucuronide or myricetin-glucoside as potential candidates, and carbohydrates would discriminate Sherry casks. However, the comparison of barrel aged rums and whiskies revealed specific signatures, highlighting the importance of the initial composition of the distillate and the distillery processes.

15.
Rapid Commun Mass Spectrom ; 31(19): 1607-1615, 2017 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-28703318

RESUMO

RATIONALE: Peak picking algorithms in mass spectrometry face the challenge of picking the correct signals from a mass spectrum. In some cases signal wiggles (side lobes) are also chosen in the produced mass list as if they were real signals. Constraints which are defined in such algorithms do not always guarantee wiggle-free accurate mass list generation out of raw mass spectra. This problem intensifies with acquisitions, which are accompanied by longer transients. Thus, the problem represents a contemporary issue, which propagates with modern high-memory digitizers and exists in both MS and MS/MS spectra. METHODS: A solariX FTMS mass spectrometer with an Infinity ICR cell (Bruker Daltonics, Bremen, Germany) coupled to a 12 Tesla magnet (Magnex, UK) was used for the experimental study. Time-domain transients of several different data point lengths 512k, 1M, 2M, 4M, 8M were obtained and were Fourier-transformed to obtain frequency spectra which show the effect of the transient truncation on sinc wiggle developments in FT-ICR-MS. MATLAB simulations were also performed to investigate the origin of the Fourier transform (FT)-artifacts. RESULTS: A new filter has been developed to identify and remove FT-artifacts (sinc side lobes) from both frequency and mass spectra. The newly developed filter is based on distinguishing between the FWHM of the correct frequency/mass signals and the FWHM of their corresponding wiggles. The filter draws a reliable confidence limit of resolution range, within which a correct frequency/mass signal is identified. The filter is applicable over a wide mass range of metabolic interest (100-1200 amu). CONCLUSIONS: The origin of FT-artifacts due to time-domain transient truncations was thoroughly investigated both experimentally and by simulations in this study. A new solution for this problem with automatic recognition and elimination of these FT-artifacts (side lobes/wiggles) is provided, which is independent of any intensity thresholds, magnetic field strengths and time-domain transient lengths.

16.
BMC Plant Biol ; 17(1): 120, 2017 07 10.
Artigo em Inglês | MEDLINE | ID: mdl-28693422

RESUMO

BACKGROUND: Elevated temperature and reduced water availability are frequently linked abiotic stresses that may provoke distinct as well as interacting molecular responses. Based on non-targeted metabolomic and transcriptomic measurements from Arabidopsis rosettes, this study aims at a systematic elucidation of relevant components in different drought and heat scenarios as well as relationships between molecular players of stress response. RESULTS: In combined drought-heat stress, the majority of single stress responses are maintained. However, interaction effects between drought and heat can be discovered as well; these relate to protein folding, flavonoid biosynthesis and growth inhibition, which are enhanced, reduced or specifically induced in combined stress, respectively. Heat stress experiments with and without supplementation of air humidity for maintenance of vapor pressure deficit suggest that decreased relative air humidity due to elevated temperature is an important component of heat stress, specifically being responsible for hormone-related responses to water deprivation. Remarkably, this "dry air effect" is the primary trigger of the metabolomic response to heat. In contrast, the transcriptomic response has a substantial temperature component exceeding the dry air component and including up-regulation of many transcription factors and protein folding-related genes. Data level integration independent of prior knowledge on pathways and condition labels reveals shared drought and heat responses between transcriptome and metabolome, biomarker candidates and co-regulation between genes and metabolic compounds, suggesting novel players in abiotic stress response pathways. CONCLUSIONS: Drought and heat stress interact both at transcript and at metabolite response level. A comprehensive, non-targeted view of this interaction as well as non-interacting processes is important to be taken into account when improving tolerance to abiotic stresses in breeding programs. Transcriptome and metabolome may respond with different extent to individual stress components. Their contrasting behavior in response to temperature stress highlights that the protein folding machinery effectively shields the metabolism from stress. Disentangling the complex relationships between transcriptome and metabolome in response to stress is an enormous challenge. As demonstrated by case studies with supporting evidence from additional data, the large dataset provided in this study may assist in determining linked genetic and metabolic features as candidates for future mechanistic analyses.


Assuntos
Adaptação Fisiológica , Regulação da Expressão Gênica de Plantas , Metaboloma , Estresse Fisiológico , Transcriptoma , Aquaporinas/genética , Aquaporinas/metabolismo , Arabidopsis , Secas , Temperatura Alta , Umidade , Sacarose/metabolismo
17.
Front Plant Sci ; 8: 101, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28261225

RESUMO

Induction of plant resistance against pathogens by defense elicitors constitutes an attractive strategy to reduce the use of fungicides in crop protection. However, all elicitors do not systematically confer protection against pathogens. Elicitor-induced resistance (IR) thus merits to be further characterized in order to understand what makes an elicitor efficient. In this study, the oligosaccharidic defense elicitors H13 and PS3, respectively, ineffective and effective to trigger resistance of grapevine leaves against downy mildew, were used to compare their effect on the global leaf metabolism. Ultra high resolution mass spectrometry (FT-ICR-MS) analysis allowed us to obtain and compare the specific metabolic fingerprint induced by each elicitor and to characterize the associated metabolic pathways. Moreover, erythritol phosphate was identified as a putative marker of elicitor-IR.

18.
Water Res ; 116: 316-323, 2017 06 01.
Artigo em Inglês | MEDLINE | ID: mdl-28359043

RESUMO

Solid phase extraction (SPE) has become a widespread method for isolating dissolved organic matter (DOM) of diverse origin such as fresh and marine waters. This study investigated the DOM extraction selectivity of 24 commercially available SPE sorbents under identical conditions (pH = 2, methanol elution) on the example of Suwannee River (SR) water and North Sea (NS) water by using DOC analysis and Fourier transform ion cyclotron resonance mass spectrometry (FT-ICR MS). Proton nuclear magnetic resonance (1H NMR) spectroscopy was employed to assess leaching behavior, and HLB sorbent was found to leach substantially, among others. Variable DOC recoveries observed for SR DOM and NS DOM were primarily caused by the respective molecular composition, with subordinated and heterogeneous contributions of relative salinity. Scatter of average H/C and O/C elemental ratios and gross alignment in mass-edited H/C ratios according to five established coarse SPE characteristics was near identical for SR DOM and NS DOM. FTMS-based principal component analysis (PCA) provided essentially analogous alignment of SR DOM and NS DOM molecular compositions according to the five established groups of SPE classification, and corroborated the sorption-mechanism-based selectivity of DOM extraction in both cases. Evaluation of structural blanks and leaching of SPE cartridges requires NMR spectroscopy because FT-ICR mass spectrometry alone will not reveal inconspicuous displacements of continual bulk signatures caused by leaching of SPE resin constituents.


Assuntos
Água Doce/química , Espectrometria de Massas , Mar do Norte , Extração em Fase Sólida , Água/química
19.
Proc Natl Acad Sci U S A ; 114(11): 2819-2824, 2017 03 14.
Artigo em Inglês | MEDLINE | ID: mdl-28242686

RESUMO

The rich diversity and complexity of organic matter found in meteorites is rapidly expanding our knowledge and understanding of extreme environments from which the early solar system emerged and evolved. Here, we report the discovery of a hitherto unknown chemical class, dihydroxymagnesium carboxylates [(OH)2MgO2CR]-, in meteoritic soluble organic matter. High collision energies, which are required for fragmentation, suggest substantial thermal stability of these Mg-metalorganics (CHOMg compounds). This was corroborated by their higher abundance in thermally processed meteorites. CHOMg compounds were found to be present in a set of 61 meteorites of diverse petrological classes. The appearance of this CHOMg chemical class extends the previously investigated, diverse set of CHNOS molecules. A connection between the evolution of organic compounds and minerals is made, as Mg released from minerals gets trapped into organic compounds. These CHOMg metalorganic compounds and their relation to thermal processing in meteorites might shed new light on our understanding of carbon speciation at a molecular level in meteorite parent bodies.

20.
Anal Chem ; 88(13): 6680-8, 2016 07 05.
Artigo em Inglês | MEDLINE | ID: mdl-27176119

RESUMO

This paper proposes improved guidelines for dissolved organic matter (DOM) isolation by solid phase extraction (SPE) with a styrene-divinylbenzene copolymer (PPL) sorbent, which has become an established method for the isolation of DOM from natural waters, because of its ease of application and appreciable carbon recovery. Suwannee River water was selected to systematically study the effects of critical SPE variables such as loading mass, concentration, flow rate, and up-scaling on the extraction selectivity of the PPL sorbent. High-field Fourier transform ion cyclotron resonance mass spectrometry (FTICR MS) and proton nuclear magnetic resonance ((1)H NMR) spectroscopy were performed to interpret the DOM chemical space of eluates, as well as permeates and wash liquids with molecular resolution. Up to 89% dissolved organic carbon (DOC) recovery was obtained with a DOC/PPL mass ratio of 1:800 at a DOC concentration of 20 mg/L. With the application of larger loading volumes, low proportions of highly oxygenated compounds were retained on the PPL sorbent. The effects of the flow rate on the extraction selectivity of the sorbent were marginal. Up-scaling had a limited effect on the extraction selectivity with the exception of increased self-esterification with a methanol solvent, resulting in methyl ester groups. Furthermore, the SPE/PPL extract exhibited highly authentic characteristics in comparison with original water and reverse osmosis samples. These findings will be useful for reproducibly isolating DOM with representative molecular compositions from various sources and concentrations and minimizing potential inconsistencies among interlaboratory comparative studies.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA