Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 12 de 12
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Antioxidants (Basel) ; 12(3)2023 Feb 28.
Artigo em Inglês | MEDLINE | ID: mdl-36978848

RESUMO

Phytopathogens are well known for their devastating activity that causes worldwide significant crop losses. However, their exploitation for crop welfare is relatively unknown. Here, we show that the microbial volatile organic compound (mVOC) profile of the bacterial phytopathogen, Erwinia amylovora, enhances Arabidopsis thaliana shoot and root growth. GC-MS head-space analyses revealed the presence of typical microbial volatiles, including 1-nonanol and 1-dodecanol. E. amylovora mVOCs triggered early signaling events including plasma transmembrane potential Vm depolarization, cytosolic Ca2+ fluctuation, K+-gated channel activity, and reactive oxygen species (ROS) and nitric oxide (NO) burst from few minutes to 16 h upon exposure. These early events were followed by the modulation of the expression of genes involved in plant growth and defense responses and responsive to phytohormones, including abscisic acid, gibberellin, and auxin (including the efflux carriers PIN1 and PIN3). When tested, synthetic 1-nonanol and 1-dodecanol induced root growth and modulated genes coding for ROS. Our results show that E. amylovora mVOCs affect A. thaliana growth through a cascade of early and late signaling events that involve phytohormones and ROS.

2.
Front Genome Ed ; 4: 823486, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35187530

RESUMO

Hemp (Cannabis sativa L.) is a multipurpose crop with many important uses including medicine, fibre, food and biocomposites. This plant is currently gaining prominence and acceptance for its valuable applications. Hemp is grown as a cash crop for its novel cannabinoids which are estimated to be a multibillion-dollar downstream market. Hemp cultivation can play a major role in carbon sequestration with good CO2 to biomass conversion in low input systems and can also improve soil health and promote phytoremediation. The recent advent of genome editing tools to produce non-transgenic genome-edited crops with no trace of foreign genetic material has the potential to overcome regulatory hurdles faced by genetically modified crops. The use of Artificial Intelligence - mediated trait discovery platforms are revolutionizing the agricultural industry to produce desirable crops with unprecedented accuracy and speed. However, genome editing tools to improve the beneficial properties of hemp have not yet been deployed. Recent availability of high-quality Cannabis genome sequences from several strains (cannabidiol and tetrahydrocannabinol balanced and CBD/THC rich strains) have paved the way for improving the production of valuable bioactive molecules for the welfare of humankind and the environment. In this context, the article focuses on exploiting advanced genome editing tools to produce non-transgenic hemp to improve the most industrially desirable traits. The challenges, opportunities and interdisciplinary approaches that can be adopted from existing technologies in other plant species are highlighted.

3.
Trends Biotechnol ; 34(7): 562-574, 2016 07.
Artigo em Inglês | MEDLINE | ID: mdl-27167723

RESUMO

The availability of genome sequences of numerous organisms and the revolution brought about by genome editing tools (e.g., ZFNs, TALENs, and CRISPR/Cas9 or RGENs) has provided a breakthrough in introducing targeted genetic changes both to explore emergent phenotypes and to introduce new functionalities. However, the wider application of these tools in biology, agriculture, medicine, and biotechnology is limited by off-target mutation effects. In this review, we compare available methods for detecting, measuring, and analyzing off-target mutations. Furthermore, we particularly focus on CRISPR/Cas9 regarding various methods, tweaks, and software tools available to nullify off-target effects.


Assuntos
Biotecnologia/métodos , Edição de Genes/métodos , Agricultura/métodos , Terapia Genética/métodos
4.
Plant Cell Rep ; 35(7): 1469-74, 2016 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-27100964

RESUMO

Evolution of the next-generation clustered, regularly interspaced, short palindromic repeat/Cas9 (CRISPR/Cas9) genome editing tools, ribonucleoprotein (RNA)-guided endonuclease (RGEN) RNPs, is paving the way for developing DNA-free genetically edited crop plants. In this review, I discuss the various methods of RGEN RNPs tool delivery into plant cells and their limitations to adopt this technology to numerous crop plants. Furthermore, focus is given on the importance of developing DNA-free genome edited crop plants, including perennial crop plants. The possible regulation on the DNA-free, next-generation genome-edited crop plants is also highlighted.


Assuntos
Sistemas CRISPR-Cas , Produtos Agrícolas/genética , Edição de Genes/métodos , Engenharia Genética/métodos , Genoma de Planta/genética , Biologia Computacional/métodos , Internet , Modelos Genéticos , Plantas Geneticamente Modificadas
5.
Nat Protoc ; 10(11): 1842-59, 2015 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-26492140

RESUMO

Targeted nucleases, including zinc-finger nucleases (ZFNs), transcription activator-like (TAL) effector nucleases (TALENs) and clustered regularly interspaced short palindromic repeat (CRISPR)/CRISPR-associated protein 9 (Cas9), have provided researchers with the ability to manipulate nearly any genomic sequence in human cells and model organisms. However, realizing the full potential of these genome-modifying technologies requires their safe and efficient delivery into relevant cell types. Unlike methods that rely on expression from nucleic acids, the direct delivery of nuclease proteins to cells provides rapid action and fast turnover, leading to fewer off-target effects while maintaining high rates of targeted modification. These features make nuclease protein delivery particularly well suited for precision genome engineering. Here we describe procedures for implementing protein-based genome editing in human embryonic stem cells and primary cells. Protocols for the expression, purification and delivery of ZFN proteins, which are intrinsically cell-permeable; TALEN proteins, which can be internalized via conjugation with cell-penetrating peptide moieties; and Cas9 ribonucleoprotein, whose nucleofection into cells facilitates rapid induction of multiplexed modifications, are described, along with procedures for evaluating nuclease protein activity. Once they are constructed, nuclease proteins can be expressed and purified within 6 d, and they can be used to induce genomic modifications in human cells within 2 d.


Assuntos
Marcação de Genes/métodos , Biologia Molecular/métodos , Recombinases/metabolismo , Células Cultivadas , Humanos , Transporte Proteico , Células-Tronco
6.
Trends Biotechnol ; 33(9): 489-91, 2015 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-25978870

RESUMO

Direct delivery of purified Cas9 protein with guide RNA into plant cells, as opposed to plasmid-mediated delivery, displays high efficiency and reduced off-target effects. Following regeneration from edited cells, the ensuing plant is also likely to bypass genetically modified organism (GMO) legislation as the genome editing complex is degraded in the recipient cells.


Assuntos
Produtos Agrícolas , Plantas Geneticamente Modificadas , RNA Guia de Cinetoplastídeos , Agricultura
7.
Front Plant Sci ; 6: 151, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-25821453

RESUMO

Microbial volatile organic compounds (MVOCs) are produced by a wide array of microorganisms ranging from bacteria to fungi. A growing body of evidence indicates that MVOCs are ecofriendly and can be exploited as a cost-effective sustainable strategy for use in agricultural practice as agents that enhance plant growth, productivity, and disease resistance. As naturally occurring chemicals, MVOCs have potential as possible alternatives to harmful pesticides, fungicides, and bactericides as well as genetic modification. Recent studies performed under open field conditions demonstrate that efficiently adopting MVOCs may contribute to sustainable crop protection and production. We review here the chemical diversity of MVOCs by describing microbial-plants and microbial-microbial interactions. Furthermore, we discuss MVOCs role in inducing phenotypic plant responses and their potential physiological effects on crops. Finally, we analyze potential and actual limitations for MVOC use and deployment in field conditions as a sustainable strategy for improving productivity and reducing pesticide use.

8.
Trends Plant Sci ; 20(4): 206-11, 2015 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-25659880

RESUMO

Current agricultural practice depends on a wide use of pesticides, bactericides, and fungicides. Increased demand for organic products indicates consumer preference for reduced chemical use. Therefore, there is a need to develop novel sustainable strategies for crop protection and enhancement that do not rely on genetic modification and/or harmful chemicals. An increasing body of evidence indicates that bacterial and fungal microbial volatile organic compounds (MVOCs) might provide an alternative to the use of chemicals to protect plants from pathogens and provide a setting for better crop welfare. It is well known that MVOCs can modulate the physiology of plants and microorganisms and in this Opinion we propose that MVOCs can be exploited as an ecofriendly, cost-effective, and sustainable strategy for agricultural practices.


Assuntos
Agricultura , Bactérias/química , Bioprospecção , Fungos/química , Desenvolvimento Vegetal , Compostos Orgânicos Voláteis/análise
9.
Int J Mol Sci ; 15(3): 3842-59, 2014 Mar 04.
Artigo em Inglês | MEDLINE | ID: mdl-24599077

RESUMO

The calcium ion (Ca2+) is a versatile intracellular messenger. It provides dynamic regulation of a vast array of gene transcriptions, protein kinases, transcription factors and other complex downstream signaling cascades. For the past six decades, intracellular Ca2+ concentration has been significantly studied and still many studies are under way. Our understanding of Ca2+ signaling and the corresponding physiological phenomenon is growing exponentially. Here we focus on the improvements made in the development of probes used for Ca2+ imaging and expanding the application of Ca2+ imaging in plant science research.


Assuntos
Sinalização do Cálcio , Cálcio/metabolismo , Células Vegetais/metabolismo , Plantas/metabolismo , Algoritmos , Cálcio/química , Transferência Ressonante de Energia de Fluorescência , Indicadores e Reagentes/química , Indicadores e Reagentes/metabolismo , Proteínas Luminescentes/química , Proteínas Luminescentes/metabolismo , Microscopia Confocal
10.
J Plant Physiol ; 171(2): 136-9, 2014 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-24331428

RESUMO

Ca(2+) is a key player in plant cell responses to biotic and abiotic stress. Owing to the central role of cytosolic Ca(2+) ([Ca(2+)]cyt) during early signaling and the need for precise determination of [Ca(2+)]cyt variations, we used a Cameleon YC 3.6 reporter protein expressed in Arabidopsis thaliana to quantify [Ca(2+)]cyt variations upon leaf mechanical damage (MD), herbivory by 3rd and 5th instar larvae of Spodoptera littoralis and S. littoralis oral secretions (OS) applied to MD. YC 3.6 allowed a clear distinction between MD and herbivory and discriminated between the two larvae instars. To our knowledge this is the first report of quantitative [Ca(2+)]cyt determination upon herbivory using a Cameleon calcium sensor.


Assuntos
Arabidopsis/metabolismo , Sinalização do Cálcio/fisiologia , Cálcio/metabolismo , Calmodulina , Herbivoria , Proteínas Luminescentes , Proteínas Recombinantes de Fusão , Animais , Citosol/metabolismo
11.
BMC Genomics ; 14: 760, 2013 Nov 05.
Artigo em Inglês | MEDLINE | ID: mdl-24192013

RESUMO

BACKGROUND: Plant calcium (Ca2+) signals are involved in a wide array of intracellular signalling pathways following pathogen invasion. Ca2+-binding sensory proteins such as Ca2+-dependent protein kinases (CPKs) have been predicted to mediate signalling following Ca2+ influx after pathogen infection. However, to date this prediction has remained elusive. RESULTS: We conducted a genome-wide identification of the Malus x domestica CPK (MdCPK) gene family and identified 30 CPK genes. Comparative phylogenetic analysis of Malus CPKs with CPKs of Arabidopsis thaliana (AtCPKs), Oryza sativa (OsCPKs), Populous trichocarpa (PtCPKs) and Zea mays (ZmCPKs) revealed four different groups. From the phylogenetic tree, we found that MdCPKs are closely related to AtCPKs and PtCPKs rather than OsCPKs and ZmCPKs, indicating their dicot-specific origin. Furthermore, comparative quantitative real time PCR and intracellular cytosolic calcium ([Ca2+]cyt) analysis were carried out on fire blight resistant and susceptible M. x domestica apple cultivars following infection with a pathogen (Erwinia amylovora) and/or mechanical damage. Calcium analysis showed an increased [Ca2+]cyt over time in resistant cultivars as compared to susceptible cultivars. Gene expression studies showed that 11 out of the 30 MdCPKs were differentially expressed following pathogen infection. CONCLUSIONS: We studied the genome-wide analysis of MdCPK gene family in Malus x domestica and analyzed their differential gene expression along with cytosolic calcium variation upon pathogen infection. There was a striking difference in MdCPKs gene expressions and [Ca2+]cyt variations between resistant and susceptible M. x domestica cultivars in response to E. amylovora and mechanical wounding. Our genomic and bioinformatic analysis provided an important insight about the role of MdCPKs in modulating defence responses in susceptible and resistant apple cultivars. It also provided further information on early signalling and downstream signalling cascades in response to pathogenic and mechanical stress.


Assuntos
Resistência à Doença/genética , Erwinia amylovora/patogenicidade , Doenças das Plantas/genética , Proteínas Quinases/biossíntese , Sinalização do Cálcio/genética , Erwinia amylovora/genética , Regulação da Expressão Gênica de Plantas , Genoma de Planta , Malus/genética , Malus/microbiologia , Filogenia , Doenças das Plantas/microbiologia , Proteínas Quinases/classificação , Proteínas Quinases/genética , Estresse Mecânico
12.
BMC Plant Biol ; 10: 97, 2010 May 26.
Artigo em Inglês | MEDLINE | ID: mdl-20504319

RESUMO

BACKGROUND: Plant Ca2+ signals are involved in a wide array of intracellular signaling pathways after pest invasion. Ca2+-binding sensory proteins such as Ca2+-dependent protein kinases (CPKs) have been predicted to mediate the signaling following Ca2+ influx after insect herbivory. However, until now this prediction was not testable. RESULTS: To investigate the roles CPKs play in a herbivore response-signaling pathway, we screened the characteristics of Arabidopsis CPK mutants damaged by a feeding generalist herbivore, Spodoptera littoralis. Following insect attack, the cpk3 and cpk13 mutants showed lower transcript levels of plant defensin gene PDF1.2 compared to wild-type plants. The CPK cascade was not directly linked to the herbivory-induced signaling pathways that were mediated by defense-related phytohormones such as jasmonic acid and ethylene. CPK3 was also suggested to be involved in a negative feedback regulation of the cytosolic Ca2+ levels after herbivory and wounding damage. In vitro kinase assays of CPK3 protein with a suite of substrates demonstrated that the protein phosphorylates transcription factors (including ERF1, HsfB2a and CZF1/ZFAR1) in the presence of Ca2+. CPK13 strongly phosphorylated only HsfB2a, irrespective of the presence of Ca2+. Furthermore, in vivo agroinfiltration assays showed that CPK3-or CPK13-derived phosphorylation of a heat shock factor (HsfB2a) promotes PDF1.2 transcriptional activation in the defense response. CONCLUSIONS: These results reveal the involvement of two Arabidopsis CPKs (CPK3 and CPK13) in the herbivory-induced signaling network via HsfB2a-mediated regulation of the defense-related transcriptional machinery. This cascade is not involved in the phytohormone-related signaling pathways, but rather directly impacts transcription factors for defense responses.


Assuntos
Proteínas de Arabidopsis/metabolismo , Arabidopsis/enzimologia , Sinalização do Cálcio , Proteínas Quinases Dependentes de Cálcio-Calmodulina/metabolismo , Spodoptera , Animais , Arabidopsis/genética , Proteínas de Arabidopsis/genética , Cálcio/metabolismo , Proteínas Quinases Dependentes de Cálcio-Calmodulina/genética , Ciclopentanos/metabolismo , Citosol/metabolismo , Etilenos/metabolismo , Regulação da Expressão Gênica de Plantas , Mutação , Oxilipinas/metabolismo , Fosforilação , Plantas Geneticamente Modificadas/genética , Plantas Geneticamente Modificadas/metabolismo , RNA de Plantas/genética , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Nicotiana/genética , Nicotiana/metabolismo , Fatores de Transcrição/metabolismo , Transcrição Gênica
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA