Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
PLoS One ; 11(6): e0157824, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-27362940

RESUMO

Melatonin is released from the pineal gland into the circulatory system at night in the absence of light, acting as "hormone of darkness" to the brain and body. Melatonin also can regulate circadian phasing of the suprachiasmatic nucleus (SCN). During the day-to-night transition, melatonin exposure advances intrinsic SCN neural activity rhythms via the melatonin type-2 (MT2) receptor and downstream activation of protein kinase C (PKC). The effects of melatonin on SCN phasing have not been linked to daily changes in the expression of core genes that constitute the molecular framework of the circadian clock. Using real-time RT-PCR, we found that melatonin induces an increase in the expression of two clock genes, Period 1 (Per1) and Period 2 (Per2). This effect occurs at CT 10, when melatonin advances SCN phase, but not at CT 6, when it does not. Using anti-sense oligodeoxynucleotides (α ODNs) to Per 1 and Per 2, as well as to E-box enhancer sequences in the promoters of these genes, we show that their specific induction is necessary for the phase-altering effects of melatonin on SCN neural activity rhythms in the rat. These effects of melatonin on Per1 and Per2 were mediated by PKC. This is unlike day-active non-photic signals that reset the SCN clock by non-PCK signal transduction mechanisms and by decreasing Per1 expression. Rather, this finding extends roles for Per1 and Per2, which are critical to photic phase-resetting, to a nonphotic zeitgeber, melatonin, and suggest that the regulation of these clock gene transcripts is required for clock resetting by diverse regulatory cues.


Assuntos
Melatonina/farmacologia , Proteínas Circadianas Period/genética , Proteína Quinase C/metabolismo , Animais , Relógios Biológicos/efeitos dos fármacos , Ritmo Circadiano/efeitos dos fármacos , Elementos E-Box , Regulação da Expressão Gênica/efeitos dos fármacos , Masculino , Ratos , Receptor MT2 de Melatonina/metabolismo , Transdução de Sinais/efeitos dos fármacos , Núcleo Supraquiasmático/metabolismo , Transcrição Gênica
2.
Acta Neuropathol ; 132(2): 235-256, 2016 08.
Artigo em Inglês | MEDLINE | ID: mdl-26993139

RESUMO

Alzheimer's disease (AD) is characterized by amyloid plaques composed of the ß-amyloid (Aß) peptide surrounded by swollen presynaptic dystrophic neurites consisting of dysfunctional axons and terminals that accumulate the ß-site amyloid precursor protein (APP) cleaving enzyme (BACE1) required for Aß generation. The cellular and molecular mechanisms that govern presynaptic dystrophic neurite formation are unclear, and elucidating these processes may lead to novel AD therapeutic strategies. Previous studies suggest Aß may disrupt microtubules, which we hypothesize have a critical role in the development of presynaptic dystrophies. To investigate this further, here we have assessed the effects of Aß, particularly neurotoxic Aß42, on microtubules during the formation of presynaptic dystrophic neurites in vitro and in vivo. Live-cell imaging of primary neurons revealed that exposure to Aß42 oligomers caused varicose and beaded neurites with extensive microtubule disruption, and inhibited anterograde and retrograde trafficking. In brain sections from AD patients and the 5XFAD transgenic mouse model of amyloid pathology, dystrophic neurite halos with BACE1 elevation around amyloid plaques exhibited aberrant tubulin accumulations or voids. At the ultrastructural level, peri-plaque dystrophies were strikingly devoid of microtubules and replete with multi-lamellar vesicles resembling autophagic intermediates. Proteins of the microtubule motors, kinesin and dynein, and other neuronal proteins were aberrantly localized in peri-plaque dystrophies. Inactive pro-cathepsin D also accumulated in peri-plaque dystrophies, indicating reduced lysosomal function. Most importantly, BACE1 accumulation in peri-plaque dystrophies caused increased BACE1 cleavage of APP and Aß generation. Our study supports the hypothesis that Aß induces microtubule disruption in presynaptic dystrophic neurites that surround plaques, thus impairing axonal transport and leading to accumulation of BACE1 and exacerbation of amyloid pathology in AD.


Assuntos
Doença de Alzheimer/patologia , Secretases da Proteína Precursora do Amiloide/metabolismo , Precursor de Proteína beta-Amiloide/metabolismo , Ácido Aspártico Endopeptidases/metabolismo , Neuritos/patologia , Terminações Pré-Sinápticas/metabolismo , Secretases da Proteína Precursora do Amiloide/genética , Peptídeos beta-Amiloides/metabolismo , Animais , Ácido Aspártico Endopeptidases/genética , Axônios/patologia , Modelos Animais de Doenças , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Placa Amiloide/patologia
3.
Curr Alzheimer Res ; 11(5): 441-9, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-24893886

RESUMO

As the most common neurodegenerative disease, therapeutic avenues for the treatment and prevention of Alzheimer's Disease are highly sought after. The aspartic protease BACE1 is the initiator enzyme for the formation of Aß, a major constituent of amyloid plaques that represent one of the hallmark pathological features of this disorder. Thus, targeting BACE1 for disease-modifying AD therapies represents a rationale approach. The collective knowledge acquired from investigations of BACE1 deletion mutants and characterization of BACE1 substrates has downstream significance not only for the discovery of AD drug therapies but also for predicting side effects of BACE1 inhibition. Here we discuss the identification and validation of BACE1 as the ß-secretase implicated in AD, in addition to information regarding BACE1 cell biology, localization, substrates and potential physiological functions derived from BACE1 knockout models.


Assuntos
Doença de Alzheimer , Secretases da Proteína Precursora do Amiloide/genética , Secretases da Proteína Precursora do Amiloide/metabolismo , Ácido Aspártico Endopeptidases/genética , Ácido Aspártico Endopeptidases/metabolismo , Doença de Alzheimer/enzimologia , Doença de Alzheimer/genética , Doença de Alzheimer/patologia , Animais , Humanos , Placa Amiloide/metabolismo , Placa Amiloide/patologia
4.
Acta Neuropathol ; 126(3): 329-52, 2013 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-23820808

RESUMO

ß-Site amyloid precursor protein (APP) cleaving enzyme-1 (BACE1) is the ß-secretase that initiates Aß production in Alzheimer's disease (AD). BACE1 levels are increased in AD, which could contribute to pathogenesis, yet the mechanism of BACE1 elevation is unclear. Furthermore, the normal function of BACE1 is poorly understood. We localized BACE1 in the brain at both the light and electron microscopic levels to gain insight into normal and pathophysiologic roles of BACE1 in health and AD, respectively. Our findings provide the first ultrastructural evidence that BACE1 localizes to vesicles (likely endosomes) in normal hippocampal mossy fiber terminals of both non-transgenic and APP transgenic (5XFAD) mouse brains. In some instances, BACE1-positive vesicles were located near active zones, implying a function for BACE1 at the synapse. In addition, BACE1 accumulated in swollen dystrophic autophagosome-poor presynaptic terminals surrounding amyloid plaques in 5XFAD cortex and hippocampus. Importantly, accumulations of BACE1 and APP co-localized in presynaptic dystrophies, implying increased BACE1 processing of APP in peri-plaque regions. In primary cortical neuron cultures, treatment with the lysosomal protease inhibitor leupeptin caused BACE1 levels to increase; however, exposure of neurons to the autophagy inducer trehalose did not reduce BACE1 levels. This suggests that BACE1 is degraded by lysosomes but not by autophagy. Our results imply that BACE1 elevation in AD could be linked to decreased lysosomal degradation of BACE1 within dystrophic presynaptic terminals. Elevated BACE1 and APP levels in plaque-associated presynaptic dystrophies could increase local peri-plaque Aß generation and accelerate amyloid plaque growth in AD.


Assuntos
Doença de Alzheimer/enzimologia , Secretases da Proteína Precursora do Amiloide/metabolismo , Ácido Aspártico Endopeptidases/metabolismo , Placa Amiloide/enzimologia , Terminações Pré-Sinápticas/enzimologia , Sinapses/enzimologia , Doença de Alzheimer/patologia , Animais , Autofagia/fisiologia , Humanos , Camundongos , Camundongos Transgênicos , Terminações Pré-Sinápticas/patologia , Sinapses/patologia
5.
J Neurochem ; 120 Suppl 1: 55-61, 2012 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-22122287

RESUMO

Our knowledge of the etiology of Alzheimer's disease (AD) has advanced tremendously since the discovery of amyloid beta (Aß) aggregation in diseased brains. Accumulating evidence suggests that Aß plays a causative role in AD. The ß-secretase enzyme, beta-site APP cleaving enzyme-1 (BACE1), is also implicated in AD pathogenesis, given that BACE1 cleavage of amyloid precursor protein is the initiating step in the formation of Aß. As a result, BACE1 inhibition has been branded as a potential AD therapy. In this study, we review the identification and basic characteristics of BACE1, as well as the progress in our understanding of BACE1 cell biology, substrates, and phenotypes of BACE1 knockout mice that are informative about the physiological functions of BACE1 beyond amyloid precursor protein cleavage. These data are crucial for predicting potential mechanism-based toxicity that would arise from inhibiting BACE1 for the treatment or prevention of AD.


Assuntos
Doença de Alzheimer/enzimologia , Doença de Alzheimer/etiologia , Secretases da Proteína Precursora do Amiloide/química , Secretases da Proteína Precursora do Amiloide/fisiologia , Doença de Alzheimer/metabolismo , Secretases da Proteína Precursora do Amiloide/antagonistas & inibidores , Precursor de Proteína beta-Amiloide/biossíntese , Precursor de Proteína beta-Amiloide/química , Precursor de Proteína beta-Amiloide/metabolismo , Animais , Ácido Aspártico Endopeptidases/antagonistas & inibidores , Ácido Aspártico Endopeptidases/química , Ácido Aspártico Endopeptidases/fisiologia , Humanos , Camundongos , Camundongos Knockout , Especificidade por Substrato
6.
Alzheimers Res Ther ; 3(3): 20, 2011 May 31.
Artigo em Inglês | MEDLINE | ID: mdl-21639952

RESUMO

Amyloid plaques are defining histopathologic lesions in the brains of Alzheimer's disease (AD) patients and are composed of the amyloid-beta peptide, which is widely considered to play a critical role in the pathogenesis of AD. The ß-secretase, or ß-site amyloid precursor protein cleaving enzyme 1 (BACE1; also called Asp2, memapsin 2), is the enzyme that initiates the generation of amyloid beta. Consequently, BACE1 is an attractive drug target for lowering cerebral levels of amyloid beta for the treatment or prevention of AD. Much has been learned about BACE1 since its discovery over 10 years ago. In the present article, we review BACE1 properties and characteristics, cell biology, in vivo validation, substrates, therapeutic potential, and inhibitor drug development. Studies relating to the physiological functions of BACE1 and the promise of BACE1 inhibition for AD will also be discussed. We conclude that therapeutic inhibition of BACE1 should be efficacious for AD, although careful titration of the drug dose may be necessary to limit mechanism-based side effects.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA