Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 19 de 19
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Plant Dis ; 108(6): 1729-1739, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38199961

RESUMO

As soybean (Glycine max) production continues to expand in the United States and Canada, so do pathogens and pests that directly threaten soybean yield potential and economic returns for farmers. One such pathogen is the soybean cyst nematode (SCN; Heterodera glycines). SCN has traditionally been managed using SCN-resistant cultivars and rotation with nonhost crops, but the interaction of SCN with sudden death syndrome (SDS; caused by Fusarium virguliforme) in the field makes management more difficult. Nematode-protectant seed treatments have become options for SCN and SDS management. The objectives of this study were to evaluate nematode-protectant seed treatments for their effects on (i) early and full season SCN reproduction, (ii) foliar symptoms and root-rot caused by SDS, and (iii) soybean yield across environments accounting for the above factors. Using a standard protocol, field trials were implemented in 13 states and one Canadian province from 2019 to 2021 constituting 51 site-years. Six nematode-protectant seed treatment products were compared with a fungicide + insecticide base treatment and a nontreated check. Initial (at soybean planting) and final (at soybean harvest) SCN egg populations were enumerated, and SCN females were extracted from roots and counted at 30 to 35 days postplanting. Foliar disease index (FDX) and root rot caused by the SDS pathogen were evaluated, and yield data were collected for each plot. No seed treatment offered significant nematode control versus the nontreated check for in-season and full-season nematode response, no matter the initial SCN population or FDX level. Of all treatments, ILEVO (fluopyram) and Saltro (pydiflumetofen) provided more consistent increases in yield over the nontreated check in a broader range of SCN environments, even when FDX level was high.


Assuntos
Glycine max , Doenças das Plantas , Sementes , Tylenchoidea , Glycine max/parasitologia , Animais , Doenças das Plantas/parasitologia , Doenças das Plantas/prevenção & controle , Tylenchoidea/efeitos dos fármacos , Tylenchoidea/fisiologia , Sementes/microbiologia , Sementes/parasitologia , Fusarium/fisiologia , Fusarium/efeitos dos fármacos , Canadá
2.
Pathogens ; 12(7)2023 Jul 06.
Artigo em Inglês | MEDLINE | ID: mdl-37513760

RESUMO

Three soybean field trials were conducted in Indiana to evaluate the integration of seed treatment, cultivar selection, and seeding rate on sudden death syndrome (SDS) root rot, pathogen load in the root, foliar symptoms, yield, and net return. Two soybean cultivars, one moderately resistant and one susceptible to SDS, were planted at three seeding rates (272,277 seeds/ha, 346,535 seeds/ha, and 420,792 seeds/ha). Fluopyram and pydiflumetofen seed treatments were applied to both cultivars, and the cultivars were then compared with a control. Low foliar SDS disease pressure was observed in our study. Seed treatment with either fluopyram or pydiflumetofen and the use of a moderately resistant cultivar decreased Fusarium virguliforme DNA concentration in the root relative to the control and the use of a susceptible cultivar. Fluopyram significantly reduced visual root rot severity by 8.8% and increased yield by 105 kg/ha relative to the control but was not different from pydiflumetofen. However, pydiflumetofen performed the same as the control with respect to root rot severity and yield. Findings from this study support the use of a seed treatment to protect roots from infection and the use of a moderately resistant cultivar planted at a seeding rate of 346,535 seeds/ha to protect yield and maximize net returns when a field has low foliar SDS pressure.

3.
Front Plant Sci ; 14: 1173036, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37409295

RESUMO

Crop yield prediction which provides critical information for management decision-making is of significant importance in precision agriculture. Traditional manual inspection and calculation are often laborious and time-consuming. For yield prediction using high-resolution images, existing methods, e.g., convolutional neural network, are challenging to model long range multi-level dependencies across image regions. This paper proposes a transformer-based approach for yield prediction using early-stage images and seed information. First, each original image is segmented into plant and soil categories. Two vision transformer (ViT) modules are designed to extract features from each category. Then a transformer module is established to deal with the time-series features. Finally, the image features and seed features are combined to estimate the yield. A case study has been conducted using a dataset that was collected during the 2020 soybean-growing seasons in Canadian fields. Compared with other baseline models, the proposed method can reduce the prediction error by more than 40%. The impact of seed information on predictions is studied both between models and within a single model. The results show that the influence of seed information varies among different plots but it is particularly important for the prediction of low yields.

4.
Plant Dis ; 107(11): 3487-3496, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37157104

RESUMO

Frogeye leaf spot (FLS), caused by Cercospora sojina, is an economically important disease of soybean in the United States. Data from 66 uniform fungicide trials (UFTs) conducted from 2012 to 2021 across eight states (Alabama, Arkansas, Illinois, Iowa, Kentucky, Louisiana, Mississippi, and Tennessee) were gathered and analyzed to determine the efficacy and profitability of the following fungicides applied at the beginning pod developmental stage (R3): azoxystrobin + difenoconazole (AZOX + DIFE), difenoconazole + pydiflumetofen (DIFE + PYDI), pyraclostrobin (PYRA), pyraclostrobin + fluxapyroxad + propiconazole (PYRA + FLUX + PROP), tetraconazole (TTRA), thiophanate-methyl (TMET), thiophanate-methyl + tebuconazole (TMET + TEBU), and trifloxystrobin + prothioconazole (TFLX + PROT). A network meta-analytic model was fitted to the log of the means of FLS severity data and to the nontransformed mean yield for each treatment, including the nontreated. The percent reduction in disease severity (%) and the yield response (kg/ha) relative to the nontreated was the lowest for PYRA (11%; 136 kg/ha) and the greatest for DIFE + PYDI (57%; 441 kg/ha). A significant decline in efficacy over time was detected for PYRA (18 percentage points [p.p.]), TTRA (27 p.p.), AZOX + DIFE (18 p.p.), and TMET + TEBU (19 p.p.) by using year as a continuous covariate in the model. Finally, probabilities of breaking even were the greatest (>65%) for the most effective fungicide DIFE + PYDI and the lowest (<55%) for PYRA. Results of this meta-analysis may be useful to support decisions when planning fungicide programs.


Assuntos
Fungicidas Industriais , Estados Unidos , Fungicidas Industriais/farmacologia , Glycine max , Tiofanato , Kentucky
5.
Plant Dis ; 107(11): 3422-3429, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37093164

RESUMO

Frogeye leaf spot (FLS), caused by Cercospora sojina, is an important foliar disease affecting soybean in the United States. A meta-analytic approach including 39 fungicide trials conducted from 2012 to 2021 across eight states (Alabama, Arkansas, Illinois, Iowa, Kentucky, Louisiana, Mississippi, Tennessee) was used to assess the relationship between FLS severity and soybean yield. Correlation and regression analyses were performed separately to determine Fisher's transformation of correlation coefficients (Zr), intercept (ß0) and slope (ß1). Disease pressure (low severity, ≤34.5; high severity, >34.5%) and yield class (low, ≤3,352; high, >3,352 kg/ha) were included as categorical moderators. Pearson's [Formula: see text], obtained from back-transforming the [Formula: see text]r estimated by an overall random-effects model, showed a significant negative linear relationship between FLS severity and yield ([Formula: see text] = -0.60). The [Formula: see text]r was affected by disease pressure (P = 0.0003) but not by yield class (P = 0.8141). A random-coefficient model estimated a slope of -19 kg/ha for each percent severity for a mean attainable yield of 3,719.9 kg/ha. Based on the overall mean (95% CI) of the intercept and slope estimated by the random-coefficients model, the estimated overall relative damage coefficient was 0.51% (0.36 to 0.69), indicating that a percent increase in FLS severity reduced yield by 0.51%. The best model included yield class as a covariate, and population-average intercepts differed significantly between low (3,455.1 kg/ha) and high (3,842.7 kg/ha) yield classes. This highlights the potential impact of FLS on soybean yield if not managed and may help in disease management decisions.


Assuntos
Fungicidas Industriais , Glycine max , Estados Unidos , Doenças das Plantas , Illinois , Iowa
6.
Plant Dis ; 107(4): 1131-1138, 2023 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-36190301

RESUMO

Seed treatments for the management of sudden death syndrome (SDS) caused by Fusarium virguliforme are available in the United States and Canada; however, side-by-side comparisons of these seed treatments are lacking. Sixteen field experiments were established in Illinois, Indiana, Iowa, Michigan, and Wisconsin, United States, and Ontario, Canada, in 2019 and 2020 to evaluate seed treatment combinations. Treatments included a nontreated check (NTC), fungicide and insecticide base seed treatments (base), fluopyram, base + fluopyram, base + saponin extracts from Chenopodium quinoa, base + fluopyram + heat-killed Burkholderia rinojenses, base + pydiflumetofen, base + thiabendazole + heat-killed B. rinojenses, and base + thiabendazole + C. quinoa extracts + heat-killed B. rinojenses. Treatments were tested on SDS moderately resistant and susceptible soybean cultivars at each location. Overall, NTC and base had the most root rot, most foliar disease index (FDX), and lowest yield. Base + fluopyram and base + pydiflumetofen were most effective for managing SDS. Moderately resistant cultivars reduced FDX in both years but visual root rot was greater on the moderately resistant than the susceptible cultivars in 2020. Yield response to cultivar was also inconsistent between the 2 years. In 2020, the susceptible cultivar provided significantly more yield than the moderately resistant cultivar. Treatment effect for root rot and FDX was similar in field and greenhouse evaluations. These results reinforce the need to include root rot evaluations in addition to foliar disease evaluations in the breeding process for resistance to F. virguliforme and highlights the importance of an integrated SDS management plan because not a single management tactic alone provides adequate control of the disease.


Assuntos
Fungicidas Industriais , Glycine max , Estados Unidos , Fungicidas Industriais/farmacologia , Tiabendazol , Doenças das Plantas/prevenção & controle , Melhoramento Vegetal , Ontário , Sementes , Morte Súbita
7.
Plant Dis ; 105(10): 3250-3260, 2021 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-33406860

RESUMO

The asymptomatic host range of Fusarium virguliforme includes corn, a common crop rotated with soybean that we hypothesize may alter F. virguliforme population dynamics and disease management. A field-based approach explored the temporal dynamics of F. virguliforme colonization of corn and soybean roots under different tillage and residue managements. Experiments were conducted in Iowa, Indiana, Michigan, and Wisconsin, United States and Ontario, Canada from 2016 to 2018. Corn and soybean roots were sampled at consecutive timepoints between 1 and 16 weeks after planting. DNA was extracted from all roots and analyzed by real-time quantitative PCR for F. virguliforme quantification. Trials were rotated between corn and soybean, containing a two-by-two factorial of tillage (no-tilled or tilled) and corn residue (with or without) in several experimental designs. In 2016, low amounts (approximately 100 fg per 10 mg of root tissue) of F. virguliforme were detected in the inoculated Iowa, Indiana, and Michigan locations and noninoculated Wisconsin corn fields. However, in 2017, greater levels of F. virguliforme DNA were detected in Iowa, Indiana, and Michigan across sampling timepoints. Tillage practices showed inconsistent effects on F. virguliforme root colonization and sudden death syndrome (SDS) foliar symptoms among trials and locations. However, residue management did not alter root colonization of corn or soybean by F. virguliforme. Plots with corn residue had greater SDS foliar disease index in Iowa in 2016. However, this trend was not observed across the site-years, indicating that corn residue may occasionally increase SDS foliar symptoms depending on the disease level and soil and weather factors.


Assuntos
Fusarium/patogenicidade , Glycine max , Doenças das Plantas/microbiologia , Zea mays , Ontário , Glycine max/microbiologia , Estados Unidos , Zea mays/microbiologia
8.
Plant Dis ; 105(5): 1382-1389, 2021 May.
Artigo em Inglês | MEDLINE | ID: mdl-33245257

RESUMO

Random-effect meta-analyses were performed on data from 240 field trials conducted between 2005 and 2018 across nine U.S. states and Ontario, Canada, to quantify the yield response of soybean after application of foliar fungicides at beginning pod (R3) stage. Meta-analysis showed that the overall mean yield response when fungicide was used compared with not applying a fungicide was 2.7% (110 kg/ha). Moderator variables were also investigated and included fungicide group, growing season, planting date, and base yield, which all significantly influenced the yield response. There was also evidence that precipitation from the time of planting to the R3 growth stage influenced yield when fungicide was used (P = 0.059). Fungicides containing a premix of active ingredients from multiple groups (either two or three ingredients) increased the yield by 3.0% over not applying a fungicide. The highest and lowest yield responses were observed in 2005 and 2007, respectively. Better yield response to fungicides (a 3.0% increase) occurred when soybean crops were planted not later than 21 May and when total precipitation between planting and the R3 application date was above historic averages. Temperatures during the season did not influence the yield response. Yield response to fungicide was higher (a 4.7% increase) in average yield category (no spray control yield 2,878 to 3,758 kg/ha) and then gradually decreased with increasing base yield. Partial economic analyses indicated that use of foliar fungicides is less likely to be profitable when foliar diseases are absent or at low levels.


Assuntos
Fungicidas Industriais , Produtos Agrícolas , Fungicidas Industriais/farmacologia , Ontário , Doenças das Plantas , Glycine max , Estados Unidos
9.
Plant Dis ; 104(6): 1736-1743, 2020 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-32289247

RESUMO

In total, 52 uniform field experiments were conducted in Illinois, Indiana, Iowa, Michigan, South Dakota, and Wisconsin in the United States and Ontario, Canada from 2013 to 2017 comparing crop protection products against sudden death syndrome (SDS) of soybean. Data were analyzed using meta-analytic models to summarize the relationship between foliar disease index (FDX) and yield. For each study, correlation and regression analyses were performed separately to determine three effect sizes: Fisher's transformation of correlation coefficients (Z r ), intercept (ß0), and slope (ß1). Random- and mixed-effect meta-analyses were used to summarize the effect sizes. Study- and location-specific moderator variables FDX (low < 10% and high ≥ 10%), date of planting (early = prior to 7 May, conventional = 7 to 21 May, and late = after 21 May) cultivar (susceptible and partially resistant to SDS), study location, and growing season were used as fixed effects. The overall mean effect sizes of transformed correlation coefficient [Formula: see text] r was -0.41 and different from zero (P < 0.001), indicating that yield was negatively correlated with FDX. The [Formula: see text] r was affected by disease level (P < 0.01) and cultivar (P = 0.02), with a greater effect at higher disease levels and with susceptible cultivars. The mean [Formula: see text] 0 was 4,121 kg/ha and mean [Formula: see text] 1 was -21 kg/ha/% FDX and were different from zero (P < 0.01). Results from these data indicate that, for every unit of FDX increase, yield was decreased by 0.5%. Study locations and year affected the [Formula: see text] 0 , whereas none of the moderator variables significantly affected [Formula: see text] 1.


Assuntos
Fusarium , Morte Súbita , Humanos , Illinois , Iowa , Michigan , Ontário , Doenças das Plantas , Glycine max , Estados Unidos , Wisconsin
10.
Sci Rep ; 9(1): 11207, 2019 09 09.
Artigo em Inglês | MEDLINE | ID: mdl-31501463

RESUMO

Neonicotinoids are the most widely used insecticides worldwide and are typically deployed as seed treatments (hereafter NST) in many grain and oilseed crops, including soybeans. However, there is a surprising dearth of information regarding NST effectiveness in increasing soybean seed yield, and most published data suggest weak, or inconsistent yield benefit. The US is the key soybean-producing nation worldwide and this work includes soybean yield data from 194 randomized and replicated field studies conducted specifically to evaluate the effect of NSTs on soybean seed yield at sites within 14 states from 2006 through 2017. Here we show that across the principal soybean-growing region of the country, there are negligible and management-specific yield benefits attributed to NSTs. Across the entire region, the maximum observed yield benefits due to fungicide (FST = fungicide seed treatment) + neonicotinoid use (FST + NST) reached 0.13 Mg/ha. Across the entire region, combinations of management practices affected the effectiveness of FST + NST to increase yield but benefits were minimal ranging between 0.01 to 0.22 Mg/ha. Despite widespread use, this practice appears to have little benefit for most of soybean producers; across the entire region, a partial economic analysis further showed inconsistent evidence of a break-even cost of FST or FST + NST. These results demonstrate that the current widespread prophylactic use of NST in the key soybean-producing areas of the US should be re-evaluated by producers and regulators alike.


Assuntos
Proteção de Cultivos , Glycine max , Inseticidas , Neonicotinoides , Sementes , Análise Custo-Benefício , Produção Agrícola/economia , Produção Agrícola/métodos , Proteção de Cultivos/economia , Proteção de Cultivos/métodos , Fazendeiros , Fungicidas Industriais/administração & dosagem , Humanos , Inseticidas/administração & dosagem , Inseticidas/economia , Neonicotinoides/administração & dosagem , Neonicotinoides/economia , Distribuição Aleatória , Sementes/efeitos dos fármacos , Glycine max/crescimento & desenvolvimento , Estados Unidos
11.
Plant Dis ; 103(7): 1712-1720, 2019 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-31059383

RESUMO

Sudden death syndrome (SDS), caused by Fusarium virguliforme, is an important soilborne disease of soybean. Risk of SDS increases when cool and wet conditions occur soon after planting. Recently, multiple seed treatment and foliar products have been registered and advertised for management of SDS but not all have been tested side by side in the same field experiment at multiple field locations. In 2015 and 2016, seed treatment fungicides fluopyram and thiabendazole; seed treatment biochemical pesticides citric acid and saponins extract of Chenopodium quinoa; foliar fungicides fluoxastrobin + flutriafol; and an herbicide, lactofen, were evaluated in Illinois, Indiana, Iowa, Michigan, South Dakota, Wisconsin, and Ontario for SDS management. Treatments were tested on SDS-resistant and -susceptible cultivars at each location. Overall, fluopyram provided the highest level of control of root rot and foliar symptoms of SDS among all the treatments. Foliar application of lactofen reduced foliar symptoms in some cases but produced the lowest yield. In 2015, fluopyram reduced the foliar disease index (FDX) by over 50% in both resistant and susceptible cultivars and provided 8.9% yield benefit in susceptible cultivars and 3.5% yield benefit in resistant cultivars compared with the base seed treatment (control). In 2016, fluopyram reduced FDX in both cultivars by over 40% compared with the base seed treatment. For yield in 2016, treatment effect was not significant in the susceptible cultivar while, in the resistant cultivar, fluopyram provided 3.5% greater yield than the base seed treatment. In this study, planting resistant cultivars and using fluopyram seed treatment were the most effective tools for SDS management. However, plant resistance provided an overall better yield-advantage than using fluopyram seed treatment alone. Effective seed treatments can be an economically viable consideration to complement resistant cultivars for managing SDS.


Assuntos
Proteção de Cultivos , Fungicidas Industriais , Fusarium , Glycine max , Proteção de Cultivos/métodos , Fungicidas Industriais/farmacologia , Fusarium/efeitos dos fármacos , Ontário , Doenças das Plantas/prevenção & controle , Sementes/química , Glycine max/crescimento & desenvolvimento , Estados Unidos
12.
Plant Dis ; 102(6): 1093-1100, 2018 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-30673444

RESUMO

A meta-analytic approach was used to summarize data on the effects of fluopyram-amended seed treatment on sudden death syndrome (SDS) and yield of soybean (Glycine max L.) in over 200 field trials conducted in 12 U.S. states and Ontario, Canada from 2013 to 2015. In those trials, two treatments-the commercial base (CB), and CB plus fluopyram (CBF)-were tested, and all disease and yield data were combined to conduct a random-effects and mixed-effects meta-analysis (test of moderators) to estimate percent control and yield response relative to CB. Overall, a 35% reduction in foliar disease and 295 kg/ha (7.6%) increase in yield were estimated for CBF relative to CB. Sowing date and geographic region affected both estimates. The variation in yield response was explained partially by disease severity (19%), geographic region (8%), and sowing date (10%) but not by the resistance level of the cultivar. The probability of not offsetting the cost of fluopyram was estimated on a range of grain prices and treatment cost combinations. There was a high probability (>80%) of yield gains when disease level was high in any cost-price combinations tested but very low when the foliar symptoms of the disease were absent.


Assuntos
Benzamidas/farmacologia , Fungicidas Industriais/farmacologia , Glycine max/microbiologia , Piridinas/farmacologia , Sementes/microbiologia , Ontário , Doenças das Plantas , Estados Unidos
13.
Plant Dis ; 102(1): 140-145, 2018 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-30673461

RESUMO

Soybean yield response variability to foliar fungicide applications was evaluated in on-farm replicated strip trials (OFTs) and small-plot trials (SPTs) from 2008 through 2015 in Iowa. A total of 230 OFTs and 49 SPTs were compared for yield response to pyraclostrobin, pyraclostrobin + fluxapyroxad, or trifloxystrobin + prothioconazole fungicides. OFTs (18 to 55 m wide and 200 to 800 m long strips) were harvested with farmers' combines equipped with yield monitors and GPS, while SPTs (3.0 to 4.6 m wide and 10.7 to 15.3 m long plots) were harvested by small research plot combines. Variance component and power analyses were conducted with a subset of data consisting of 12 OFTs and SPTs, each with pyraclostrobin and evaluated in 2008 and 2009. While average yield responses were similar, the residual random yield variation was smaller in OFTs than SPTs. Power analysis showed that SPTs need more replications than OFTs to detect the same overall treatment differences. To detect a yield response of 134 kg/ha, it would require at least three treatment replications with 12 locations in OFTs and seven replications with 12 locations in SPTs. Researchers need to acknowledge the differences in statistical power of detecting yield responses to foliar fungicide on soybean in different types of field experiments, especially with smaller plot sizes in situations with less foliar disease.


Assuntos
Fungicidas Industriais/administração & dosagem , Glycine max/fisiologia , Folhas de Planta/fisiologia , Acetatos/administração & dosagem , Amidas/administração & dosagem , Iminas/administração & dosagem , Iowa , Doenças das Plantas/prevenção & controle , Folhas de Planta/efeitos dos fármacos , Glycine max/efeitos dos fármacos , Glycine max/crescimento & desenvolvimento , Estrobilurinas/administração & dosagem , Triazóis/administração & dosagem
14.
Plant Dis ; 101(12): 2137-2143, 2017 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-30677377

RESUMO

A three-year study was conducted in Illinois, Indiana, Iowa, Michigan, and Ontario, Canada, from 2013 through 2015 to determine the effect of soybean (Glycine max) cultivars' source of soybean cyst nematode (SCN; Heterodera glycines) resistance on SCN population densities, sudden death syndrome (SDS; caused by Fusarium virguliforme), and yield of soybean. Five cultivars were evaluated with and without fluopyram seed treatment at each location. Cultivars with no SCN resistance had greater SDS severity, greater postharvest SCN egg counts (Pf), and lower yield than cultivars with plant introduction (PI) 548402 (Peking) and PI 88788-type of SCN resistance (P < 0.05). Cultivars with Peking-type resistance had lower Pf than those with PI 888788-type and no SCN resistance. In two locations with HG type 1.2-, cultivars with Peking-type resistance had greater foliar disease index (FDX) than cultivars with PI 88788-type. Fluopyram seed treatment reduced SDS and improved yield compared with a base seed treatment but did not affect SCN reproduction and Pf (P > 0.05). FDX and Pf were positively correlated in all three years (P < 0.01). Our results indicate that SDS severity may be influenced by SCN population density and HG type, which are important to consider when selecting cultivars for SCN management.


Assuntos
Glycine max , Sementes , Animais , Benzamidas/farmacologia , Resistência à Doença/genética , Fusarium/fisiologia , Nematoides/fisiologia , América do Norte , Doenças das Plantas/prevenção & controle , Densidade Demográfica , Piridinas/farmacologia , Sementes/efeitos dos fármacos , Sementes/microbiologia , Sementes/parasitologia , Glycine max/efeitos dos fármacos , Glycine max/microbiologia , Glycine max/parasitologia
15.
Plant Dis ; 100(7): 1339-1350, 2016 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-30686207

RESUMO

The effect of fungicides on severity of sudden death syndrome (SDS; caused by Fusarium virguliforme), plant establishment, and soybean yield was evaluated in 12 field experiments conducted in Illinois, Indiana, Iowa, Michigan, and Ontario in 2013 and 2014. Two soybean cultivars that differed in susceptibility to SDS were planted in fields with a history of SDS or with artificial augmentation of F. virguliforme. Efficacy of seed, in-furrow, and foliar-applied fungicides was assessed. SDS levels varied across locations and years. Fluopyram applied on the seed or in-furrow reduced foliar disease index maximum up to 95% in 5 of the 12 experiments. In three experiments with significant (P < 0.10) treatment effect, fluopyram seed treatment improved yields up to 11% compared with the base seed treatment comprising prothioconazole + penflufen + metalaxyl and clothianidin + Bacillus firmus. Meta-analysis also indicated that the fluopyram seed treatment and in-furrow application were effective at reducing SDS and increasing yield relative to the control; however, the baseline disease influenced the yield and disease response to fungicide treatments. Treatment effect was not significant when disease pressure was low. The concentration of F. virguliforme DNA in soybean roots, measured by a specific real-time quantitative polymerase chain reaction assay, was not different among fungicide treatments in 9 of 10 experiments. Moderately resistant cultivars had less disease than susceptible cultivars, indicating that resistant cultivars in combination with fluopyram seed treatment or in-furrow application could provide effective management of SDS.

16.
Plant Dis ; 100(8): 1735-1743, 2016 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-30686218

RESUMO

A 2-year study was conducted in Illinois, Indiana, Iowa, and Ontario in 2013 and 2014 to determine the effects of planting date, seed treatment, and cultivar on plant population, sudden death syndrome (SDS) caused by Fusarium virguliforme, and grain yield of soybean (Glycine max). Soybean crops were planted from late April to mid-June at approximately 15-day intervals, for a total of three to four plantings per experiment. For each planting date, two cultivars differing in SDS susceptibility were planted with and without fluopyram seed treatment. Mid-May plantings resulted in higher disease index compared with other planting dates in two experiments, early June plantings in three, and the remaining six experiments were not affected by planting date. Soil temperature at planting was not linked to SDS development. Root rot was greater in May plantings for most experiments. Resistant cultivars had significantly lower disease index than the susceptible cultivar in 54.5% of the experiments. Fluopyram reduced disease severity and protected against yield reductions caused by SDS in nearly all plantings and cultivars, with a maximum yield response of 1,142 kg/ha. Plant population was reduced by fluopyram seed treatment and early plantings in some experiments; however, grain yield was not affected by these reductions. Yields of plots planted in mid-June were up to 29.8% less than yields of plots planted in early May. The lack of correlation between early planting date and SDS severity observed in this study indicates that farmers do not have to delay planting in the Midwest to prevent yield loss due to SDS; cultivar selection combined with fluopyram seed treatment can reduce SDS in early-planted soybean (late April to mid May).

17.
Phytopathology ; 105(12): 1601-11, 2015 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-26368513

RESUMO

The ability to accurately detect and quantify Fusarium virguliforme, the cause of sudden death syndrome (SDS) in soybean, in samples such as plant root tissue and soil is extremely valuable for accurate disease diagnoses and to address research questions. Numerous quantitative real-time polymerase chain reaction (qPCR) assays have been developed for this pathogen but their sensitivity and specificity for F. virguliforme have not been compared. In this study, six qPCR assays were compared in five independent laboratories using the same set of DNA samples from fungi, plants, and soil. Multicopy gene-based assays targeting the ribosomal DNA intergenic spacer (IGS) or the mitochondrial small subunit (mtSSU) showed relatively high sensitivity (limit of detection [LOD] = 0.05 to 5 pg) compared with a single-copy gene (FvTox1)-based assay (LOD = 5 to 50 pg). Specificity varied greatly among assays, with the FvTox1 assay ranking the highest (100%) and two IGS assays being slightly less specific (95 to 96%). Another IGS assay targeting four SDS-causing fusaria showed lower specificity (70%), while the two mtSSU assays were lowest (41 and 47%). An IGS-based assay showed consistently highest sensitivity (LOD = 0.05 pg) and specificity and inclusivity above 94% and, thus, is suggested as the most useful qPCR assay for F. virguliforme diagnosis and quantification. However, specificity was also above 94% in two other assays and their selection for diagnostics and research will depend on objectives, samples, and materials used. These results will facilitate both fundamental and disease management research pertinent to SDS.


Assuntos
Fusarium/isolamento & purificação , Glycine max/microbiologia , Reação em Cadeia da Polimerase/estatística & dados numéricos , Microbiologia do Solo , Fusarium/genética , Raízes de Plantas/microbiologia , Reação em Cadeia da Polimerase/métodos
18.
Plant Dis ; 99(3): 347-354, 2015 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-30699703

RESUMO

Sudden death syndrome (SDS), caused by Fusarium virguliforme, is an important yield limiting disease of soybean. Glyphosate is used to control weeds in soybean; however, its effect on SDS is not clearly understood. The objective of this study was to examine the impact of glyphosate on SDS, yield, and plant nutrition under field conditions. Fourteen field experiments were conducted in Iowa, Illinois, Indiana, Michigan, Wisconsin, and Ontario, Canada during 2011 to 2013. The experiment consisted of six treatment combinations of glyphosate and herbicides not containing glyphosate. Disease index was significantly different across the location-years, ranging from 0 to 65. The highest disease was noted in locations with irrigation, indicating that high soil moisture favors development of SDS. There were no effects of herbicide treatments or interactions on disease. The foliar disease index among the treatments over all years ranged from 9 to 13. Glyphosate-treatments also tended to yield more than treatments of herbicides not containing glyphosate. There were no interactions between glyphosate-treatments and total manganese in plant tissue. The interaction of glyphosate with other nutrients in plant tissue was inconclusive. This 14 location-year study demonstrated that glyphosate application did not increase SDS severity or adversely affect soybean yield under field conditions.

19.
Plant Dis ; 96(12): 1743-1748, 2012 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-30727254

RESUMO

Bacterial leaf streak (caused by Xanthomonas campestris pv. translucens) has reemerged as a potential threat in spring wheat (Triticum aestivum) production areas in the northern Great Plains. As with other foliar bacterial diseases, chemical control under field situations is neither economical nor practical. Development of resistant genotypes will be needed for adequate management of the disease. There is currently limited information on sources of resistance in hard spring wheat germplasm. The main objective was to develop and apply a robust screening tool for evaluating germplasm against bacterial leaf streak, and to identify resistance sources for this disease. Inoculated field experiments were conducted in Brookings and Codington Counties, SD in 2009 and 2010 using a virulent local isolate (XctSD-017) inoculated after tillering stage. Forty-five hard red spring wheat genotypes with diverse genetic backgrounds were evaluated for disease severity, with ratings made at 7-day intervals from heading through dough stage. Results of this study showed clear differences in level of resistance among the 45 genotypes, with no immunity expressed. SD4205 was found resistant to the disease with the lowest area under the disease progress curve across location-years. Other genotypes showing moderate levels of resistance included SD4148, SD4176, 'Alsen', SD4023, 'Faller', SD4024, 'Knudson', and SD4199. Grain weight was negatively correlated to disease, as was days to heading. The resistance identified appeared to be quantitative in nature and was expressed through slower disease progress and reduced severity.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA