Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
bioRxiv ; 2023 Mar 23.
Artigo em Inglês | MEDLINE | ID: mdl-36993660

RESUMO

The class I proteins of the major histocompatibility complex (MHC-I) display epitopic peptides derived from endogenous proteins on the cell surface for immune surveillance. Accurate modeling of peptide/HLA (pHLA, the human MHC) structures has been mired by conformational diversity of the central peptide residues, which are critical for recognition by T cell receptors. Here, analysis of X-ray crystal structures within a curated database (HLA3DB) shows that pHLA complexes encompassing multiple HLA allotypes present a discrete set of peptide backbone conformations. Leveraging these representative backbones, we employ a regression model trained on terms of a physically relevant energy function to develop a comparative modeling approach for nonamer peptide/HLA structures named RepPred. Our method outperforms the top pHLA modeling approach by up to 19% in terms of structural accuracy, and consistently predicts blind targets not included in our training set. Insights from our work provide a framework for linking conformational diversity with antigen immunogenicity and receptor cross-reactivity.

2.
Phys Rev Res ; 4(1)2022.
Artigo em Inglês | MEDLINE | ID: mdl-35373142

RESUMO

Lipid bilayer membranes undergo rapid bending undulations with wavelengths from tens of nanometers to tens of microns due to thermal fluctuations. Here, we probe such undulations and the membranes' mechanics by measuring the time-varying orientation of single gold nanorods (GNRs) adhered to the membrane, using high-speed dark field microscopy. In a lipid vesicle, such measurements allow the determination of the membrane's viscosity, bending rigidity, and tension as well as the friction coefficient for sliding of the monolayers over one another. The in-plane rotation of the GNR is hindered by undulations in a tension dependent manner, consistent with simulations. The motion of single GNRs adhered to the plasma membrane of living cultured cells similarly reveals the membrane's complex physics and coupling to the cell's actomyosin cortex.

3.
Adv Mater Interfaces ; 8(23)2021 Dec 08.
Artigo em Inglês | MEDLINE | ID: mdl-35782961

RESUMO

How nanoparticle (NP) mechanical properties impact multivalent ligand-receptor-mediated binding to cell surfaces, the avidity, propensity for internalization, and effects due to crowding remains unknown or unquantified. Through computational analyses, the effects of NP composition from soft, deformable NPs to rigid spheres, effect of tethers, the crowding of NPs at the membrane surface, and the cell membrane properties such as cytoskeletal interactions are addressed. Analyses of binding mechanisms of three distinct NPs that differ in type and rigidity (core-corona flexible NP, rigid NP, and rigid-tethered NP) but are otherwise similar in size and ligand surface density are reported; moreover, for the case of flexible NP, NP stiffness is tuned by varying the internal crosslinking density. Biophysical modeling of NP binding to membranes together with thermodynamic analysis powered by free energy calculations is employed, and it is shown that efficient cellular targeting and uptake of NP functionalized with targeting ligand molecules can be shaped by factors including NP flexibility and crowding, receptor-ligand binding avidity, state of the membrane cytoskeleton, and curvature inducing proteins. Rational design principles that confer tension, membrane excess area, and cytoskeletal sensing properties to the NP which can be exploited for cell-specific targeting of NP are uncovered.

4.
Soft Matter ; 16(21): 4941-4954, 2020 Jun 07.
Artigo em Inglês | MEDLINE | ID: mdl-32436537

RESUMO

The dynamics and organization of the actin cytoskeleton are crucial to many cellular events such as motility, polarization, cell shaping, and cell division. The intracellular and extracellular signaling associated with this cytoskeletal network is communicated through cell membranes. Hence the organization of membrane macromolecules and actin filament assembly are highly interdependent. Although the actin-membrane linkage is known to happen through many routes, the major class of interactions is through the direct interaction of actin-binding proteins with the lipid class containing poly-phosphatidylinositols (PPIs). Among the PPIs, phosphatidylinositol bisphosphate (PI(4,5)P2) acts as a significant factor controlling actin polymerization in the proximity of the membrane by binding to actin-associated proteins. The molecular interactions between these actin-binding proteins and the membrane lipids remain elusive. Here, using molecular modeling, analytical theory, and experimental methods, we investigate the binding of three different actin-binding proteins, mDia2, NWASP, and gelsolin, to membranes containing PI(4,5)P2 lipids. We perform molecular dynamics simulations on the protein-bilayer system and analyze the membrane binding in the form of hydrogen bonds and salt bridges at various PI(4,5)P2 and cholesterol concentrations. Our experimental study with PI(4,5)P2-containing large unilamellar vesicles mimics the computational experiments. Using the multivalencies of the proteins obtained in molecular simulations and the cooperative binding mechanisms of the proteins, we also propose a multivalent binding model that predicts the actin filament distributions at various PI(4,5)P2 and protein concentrations.


Assuntos
Gelsolina/química , Bicamadas Lipídicas/química , Proteínas Associadas aos Microtúbulos/química , Simulação de Dinâmica Molecular , NADPH Desidrogenase/química , Fosfatidilinositol 4,5-Difosfato/química , Animais , Membrana Celular/química , Membrana Celular/metabolismo , Gelsolina/metabolismo , Bicamadas Lipídicas/metabolismo , Camundongos , Proteínas Associadas aos Microtúbulos/metabolismo , NADPH Desidrogenase/metabolismo , Fosfatidilinositol 4,5-Difosfato/metabolismo , Ligação Proteica
5.
Phys Biol ; 16(6): 066011, 2019 10 21.
Artigo em Inglês | MEDLINE | ID: mdl-31561242

RESUMO

The morphologies of cell membranes, and specifically the local curvature distributions are determined either by its intrinsic components such as lipids and membrane-associated proteins or by the adhesion forces due to membrane interactions with the cytoskeleton, extracellular matrix (ECM) and other cells in the tissue, as well as physical variables such as membrane and frame tensions. We present a computational analysis for a model of pinned membranes based on the dynamically triangulated Monte Carlo (MC) model for membranes. We show that membrane adhesion to ECM or a substrate promotes curvature generation on cell membranes, and this process depends on the excess area, or equivalently membrane tension, and the density of adhesion sites. This biophysics based model predicts adhesion induced biogenesis of microvesicles in cell membranes. For a moderate density of adhesion sites and high excess membrane area, an increase in membrane tension can result in the formation of microvesicles and tubules on the membrane. We also demonstrate the significance of intrinsically curved proteins in promoting vesiculation on pinned membranes. The results presented here are relevant to the understanding of microvesicle biogenesis and curved membrane topographies due to physical factors such as substrate stiffness and ECM interactions.


Assuntos
Adesão Celular/fisiologia , Membrana Celular/fisiologia , Modelos Biológicos , Fenômenos Biofísicos , Método de Monte Carlo
6.
J Biol Chem ; 294(12): 4704-4722, 2019 03 22.
Artigo em Inglês | MEDLINE | ID: mdl-30692198

RESUMO

Spatial and temporal control of actin polymerization is fundamental for many cellular processes, including cell migration, division, vesicle trafficking, and response to agonists. Many actin-regulatory proteins interact with phosphatidylinositol 4,5-bisphosphate (PI(4,5)P2) and are either activated or inactivated by local PI(4,5)P2 concentrations that form transiently at the cytoplasmic face of cell membranes. The molecular mechanisms of these interactions and how the dozens of PI(4,5)P2-sensitive actin-binding proteins are selectively recruited to membrane PI(4,5)P2 pools remains undefined. Using a combination of biochemical, imaging, and cell biologic studies, combined with molecular dynamics and analytical theory, we test the hypothesis that the lateral distribution of PI(4,5)P2 within lipid membranes and native plasma membranes alters the capacity of PI(4,5)P2 to nucleate actin assembly in brain and neutrophil extracts and show that activities of formins and the Arp2/3 complex respond to PI(4,5)P2 lateral distribution. Simulations and analytical theory show that cholesterol promotes the cooperative interaction of formins with multiple PI(4,5)P2 headgroups in the membrane to initiate actin nucleation. Masking PI(4,5)P2 with neomycin or disrupting PI(4,5)P2 domains in the plasma membrane by removing cholesterol decreases the ability of these membranes to nucleate actin assembly in cytoplasmic extracts.


Assuntos
Complexo 2-3 de Proteínas Relacionadas à Actina/metabolismo , Actinas/metabolismo , Fosfatidilinositol 4,5-Difosfato/metabolismo , Animais , Sítios de Ligação , Bovinos , Membrana Celular/metabolismo , Humanos , Bicamadas Lipídicas , Simulação de Dinâmica Molecular
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA