Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 58
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Peptides ; 177: 171184, 2024 Mar 02.
Artigo em Inglês | MEDLINE | ID: mdl-38432550

RESUMO

It is ideal to ingest bioactive substances from daily foods to stay healthy. Rice is the staple food for almost half of the human population. We found that an orally administered enzymatic digest of rice endosperm protein exhibits antidepressant-like effects in the tail suspension test (TST) using mice. A comprehensive peptide analysis of the digest using liquid chromatography-tandem mass spectrometry was performed, and a tridecapeptide QQFLPEGQSQSQK, detected in the digest, was chemosynthesized. Oral administration of the tridecapeptide exhibited antidepressant-like effects at a low dose comparable to classical antidepressant in the TST. This also exhibited anti-depressant-like effect in the forced swim test. We named it rice endosperm-derived antidepressant-like peptide (REAP). Intriguingly, intraperitoneal administration had no effect. Orally administered REAP(8-13) but not REAP(1-7) exhibited antidepressant-like activity, suggesting that the C-terminal structure is important for the antidepressant-like effect. We confirmed the presence of REAP, corresponding to rice glutelin type B4(130-142) and B5(130-142), in the digest. The effects of REAP were blocked by both dopamine D1 and D2 antagonists. These results suggest that it exerts its antidepressant-like activity through activation of the dopamine system. Taken together, oral administration of a novel tridecapeptide exhibited antidepressant-like effects via the dopamine system. This is the first report of a rice-derived peptide that exhibits antidepressant-like effects.

2.
Biosci Biotechnol Biochem ; 88(6): 671-678, 2024 May 22.
Artigo em Inglês | MEDLINE | ID: mdl-38453432

RESUMO

Triacylglycerols (TAGs) are a major fat component in human milk. Since gastric lipase produces 1,2-diacylglycerol from TAGs, we focused on the bioactivity of human milk-derived diacylglycerols in stomach cells. Ghrelin is produced in the stomach and acts as an important regulator of growth hormone secretion and energy homeostasis. In this study, we showed that 1-oleoyl-2-palmitoylglycerol (OP) increased ghrelin secretion, whereas 1,3-dioleoyl-2-palmitoylglycerol (OPO), a major component of human milk TAGs, did not increase ghrelin secretion in the ghrelin-secreting cell line, MGN3-1. Therefore, diacylglycerol OP may directly contribute to the regulation of ghrelin secretion. We also found that 2-palmitoylglycerol and 1- and 2-oleoylglycerol increased ghrelin secretion. Finally, we demonstrated that intracellular cAMP levels and preproghrelin and ghrelin O-acyl transferase expression levels were enhanced by OP treatment in MGN3-1 cells. This may represent an example of a novel mother-infant interaction mediated by fat components derived from human breast milk.


Assuntos
Grelina , Leite Humano , Grelina/metabolismo , Leite Humano/metabolismo , Leite Humano/química , Humanos , AMP Cíclico/metabolismo , Linhagem Celular , Aciltransferases/metabolismo , Aciltransferases/genética , Triglicerídeos/metabolismo , Diglicerídeos/metabolismo , Camundongos
3.
Case Rep Oncol ; 16(1): 331-337, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37187686

RESUMO

Oxaliplatin is a key drug for colorectal cancer and causes peripheral neuropathy. Oxaliplatin-induced laryngopharyngeal dysesthesia is an acute peripheral neuropathy similar to a hypersensitivity reaction. Hypersensitivity reactions to oxaliplatin do not require immediate discontinuation, but re-challenge and desensitization therapy can be very burdensome for patients. We encountered 2 cases in which laryngopharyngeal dysesthesia could be differentiated from hypersensitivity reactions to oxaliplatin, and treatment could continue. The first case was that of a 58-year-old woman who developed dyspnea during the first course of combination therapy with capecitabine and oxaliplatin as the primary treatment for advanced rectal cancer. After laryngopharyngeal dysesthesia was differentiated from hypersensitivity reaction based on these typical symptoms, she was considered to have grade 3 (Common Terminology Criteria for Adverse Events [CTCAE] ver. 5) laryngopharyngeal dysesthesia. The second course of oxaliplatin was extended from 2 to 4 h, but symptoms recurred. The third course was performed with a reduced dose of oxaliplatin from 130 mg/m2 to 100 mg/m2, and the patient could complete the treatment without symptom recurrence. The second case involved a 76-year-old woman who developed grade 3 laryngopharyngeal dysesthesia during the first course of combination therapy with capecitabine and oxaliplatin as the primary treatment for localized colon cancer. Based on the experience of the first case, we reduced the oxaliplatin dose from 130 mg/m2 to 100 mg/m2 for the second course, and the patient completed the treatment without symptoms. This dose reduction was effective for grade 3 laryngopharyngeal dysesthesia caused by oxaliplatin without reducing therapeutic efficacy.

4.
FASEB J ; 37(4): e22836, 2023 04.
Artigo em Inglês | MEDLINE | ID: mdl-36856734

RESUMO

Ghrelin sensitivity is known to decrease with aging in mice and humans, and the decrease contributes to anorexia with aging. In this study, we discovered novel ghrelin sensitivity-enhancing peptides. Ghrelin sensitivity was evaluated by examining whether dipeptide samples enhanced the calcium response to ghrelin in the growth hormone secretagogue receptor-transfected cell line. First, dipeptides were screened using a 336-dipeptide library and we revealed that Ser-Tyr (SY) potentiated ghrelin sensitivity in particular. Based on the structure-activity relationship determined using the dipeptide library and comprehensive analysis of peptides in the chymotrypsin digest of soy ß-conglycinin (ß-CG), which enhanced ghrelin sensitivity, candidate peptides were narrowed down. Among the chemosynthesized peptides, we discovered that an undecapeptide, SLVNNDDRDSY, corresponding to ß-CGα(267-277), stimulated ghrelin sensitivity in vitro. This peptide enhanced the orexigenic activity of ghrelin in C57BL/6 mice and stimulated food intake. Thus, we demonstrated that SLVNNDDRDSY stimulated ghrelin sensitivity in vitro and in vivo and named it "soy-fortelin". Moreover, orally administered soy-fortelin had a similar but smaller effect in the young C57BL/6 mice, whereas it strongly stimulated food intake in 2-year-old aged mice that exhibited high blood ghrelin levels and low ghrelin sensitivity. In conclusion, we discovered soy-fortelin as a novel peptide that enhances ghrelin sensitivity in vivo and in vitro and increases food intake in young and aged ghrelin-resistant mice. Soy-fortelin is the first food-derived peptide reported to enhance ghrelin sensitivity.


Assuntos
Dipeptídeos , Ingestão de Alimentos , Grelina , Animais , Camundongos , Envelhecimento , Camundongos Endogâmicos C57BL
5.
Sci Rep ; 13(1): 2887, 2023 02 18.
Artigo em Inglês | MEDLINE | ID: mdl-36807368

RESUMO

Many people eat polished rice, while rice bran, a by-product known to be rich in protein and expected to have potential functions for health benefits, has not been effectively utilized. In this study, we determined that orally administered Val-Tyr-Thr-Pro-Gly (VYTPG) derived from rice bran protein improved cognitive decline in mice fed a high-fat diet (HFD). It was demonstrated that VYTPG was released from model peptides corresponding to fragment sequences of original rice proteins (Os01g0941500, Os01g0872700, and allergenic protein) after treatment with thermolysin, a microorganism-derived enzyme often used in industrial scale processes. The thermolysin digest also improved cognitive decline after oral administration in mice. Because VYTPG (1.0 mg/kg) potently improved cognitive decline and is enzymatically produced from the rice bran, we named it rice-memolin. Next, we investigated the mechanisms underlying the cognitive decline improvement associated with rice-memolin. Methyllycaconitine, an antagonist for α7 nicotinic acetylcholine receptor, suppressed the rice-memolin-induced effect, suggesting that rice-memolin improved cognitive decline coupled to the acetylcholine system. Rice-memolin increased the number of 5-bromo-2'-deoxyuridine (BrdU)-positive cells and promoted the mRNA expression of EGF and FGF-2 in the hippocampus, implying that these neurotropic factors play a role in hippocampal neurogenesis after rice-memolin administration. Epidemiologic studies demonstrated that diabetes is a risk factor for dementia; therefore, we also examined the effect of rice-memolin on glucose metabolism. Rice-memolin improved glucose intolerance. In conclusion, we identified a novel rice-derived peptide that can improve cognitive decline. The mechanisms are associated with acetylcholine and hippocampal neurogenesis. Rice-memolin is the first rice-brain-derived peptide able to improve cognitive decline.


Assuntos
Oryza , Camundongos , Animais , Termolisina , Acetilcolina , Peptídeos/farmacologia , Cognição , Administração Oral
6.
J Agric Food Chem ; 71(1): 421-429, 2023 Jan 11.
Artigo em Inglês | MEDLINE | ID: mdl-36580688

RESUMO

In this study, we demonstrated that novel rice-derived bioactive peptides promote the secretion of ghrelin, an endogenous orexigenic hormone secreted from the stomach. The enzymatic digest of rice endosperm protein with subtilisin, a microorganism-derived enzyme, stimulated acylated ghrelin secretion in the ghrelin-releasing cell line MGN3-1 and increased food intake after oral administration in mice. By performing a comprehensive analysis based on structure-activity relationships, we selected candidate peptides from over 30,000 peptides in the rice digest. Among them, we found that QAFEPIRSV and TNPWHSPRQGSF, corresponding to the amino acid sequence of the rice endoplasmic proteins glutelin A1 or A2(52-60) and B1 or B2(31-42), respectively, stimulated acylated ghrelin release in MGN3-1 cells. We named them rice-ghretropins A and B. Pyroglutamate formation of rice-ghretropin A, [pyr1]-rice-ghretropin A, also promoted ghrelin secretion. Furthermore, oral administration of rice-ghretropins increased food intake, plasma ghrelin concentration, and small intestinal transit in mice. In addition, the subtilisin digest of the rice protein significantly increased food intake for 4 h in 9 month-old (control: 0.61 ± 0.049 g; digest: 0.83 ± 0.059 g) and 24 month-old mice (control: 0.52 ± 0.067 g; digest: 1.01 ± 0.064 g). In summary, we found that novel bioactive peptides, namely, rice-ghretropins, from the enzymatic digest of rice endosperm stimulated acylated ghrelin secretion and increased food intake. This is the first report of rice-derived exogenous bioactive peptides that increase acylated ghrelin secretion.


Assuntos
Grelina , Oryza , Camundongos , Animais , Grelina/metabolismo , Oryza/metabolismo , Ingestão de Alimentos , Proteínas , Subtilisinas
7.
Nutrients ; 14(15)2022 Jul 29.
Artigo em Inglês | MEDLINE | ID: mdl-35956293

RESUMO

d-allulose, a rare sugar, has sweetness with few calories. d-allulose regulates feeding and glycemia, and ameliorates hyperphagia, obesity and diabetes. All these functions involve the central nervous system. However, central mechanisms underlying these effects of d-allulose remain unknown. We recently reported that d-allulose activates the anorexigenic neurons in the hypothalamic arcuate nucleus (ARC), the neurons that respond to glucagon-like peptide-1 and that express proopiomelanocortin. However, its action on the orexigenic neurons remains unknown. This study investigated the effects of d-allulose on the ARC neurons implicated in hunger, by measuring cytosolic Ca2+ concentration ([Ca2+]i) in single neurons. d-allulose depressed the increases in [Ca2+]i induced by ghrelin and by low glucose in ARC neurons and inhibited spontaneous oscillatory [Ca2+]i increases in neuropeptide Y (NPY) neurons. d-allulose inhibited 10 of 35 (28%) ghrelin-responsive, 18 of 60 (30%) glucose-sensitive and 3 of 8 (37.5%) NPY neurons in ARC. Intracerebroventricular injection of d-allulose inhibited food intake at 20:00 and 22:00, the early dark phase when hunger is promoted. These results indicate that d-allulose suppresses hunger-associated feeding and inhibits hunger-promoting neurons in ARC. These central actions of d-allulose represent the potential of d-allulose to inhibit the hyperphagia with excessive appetite, thereby counteracting obesity and diabetes.


Assuntos
Núcleo Arqueado do Hipotálamo , Neuropeptídeo Y , Animais , Apetite , Núcleo Arqueado do Hipotálamo/fisiologia , Ingestão de Alimentos , Frutose , Grelina/farmacologia , Glucose/farmacologia , Hiperfagia/prevenção & controle , Camundongos , Neurônios/metabolismo , Neuropeptídeo Y/metabolismo , Obesidade/tratamento farmacológico , Ratos , Ratos Sprague-Dawley
8.
Biochem Biophys Res Commun ; 613: 159-165, 2022 07 12.
Artigo em Inglês | MEDLINE | ID: mdl-35561584

RESUMO

A rare sugar D-Allulose has sweetness without calorie. Previous studies have shown that D-Allulose improves glucose and energy metabolism and ameliorates obesity. However, underlying mechanisms remain elusive. This study explored the effect of central injection of D-Allulose on feeding behavior in mice. We also examined direct effects of D-Allulose on the neurons in the hypothalamic arcuate nucleus (ARC) that regulate feeding, including the anorexigenic glucagon-like peptide-1 (GLP-1)-responsive neurons and proopiomelanocortin (POMC) neurons. Single neurons were isolated from ARC and cytosolic Ca2+ concentration ([Ca2+]i) was measured by fura-2 microfluorometry. Administration of D-Allulose at 5.6, 16.7 and 56 mM concentration-dependently increased [Ca2+]i in ARC neurons. The [Ca2+]i increases took place similarly when the osmolarity of superfusion solution was kept constant. The majority (40%) of the D-Allulose-responsive neurons also responded to GLP-1 with [Ca2+]i increases. D-Allulose increased [Ca2+]i in 33% of POMC neurons in ARC. D-Allulose potentiated the GLP-1 action to increase [Ca2+]i in ARC neurons including POMC neurons. Intracerebroventricular injection of D-Allulose significantly decreased food intake at 1 and 2 h after injection. These results demonstrate that D-Allulose cooperates with glucagon-like peptide-1 and activates the ARC neurons including POMC neurons. Furthermore, central injection of D-Allulose inhibits feeding. These central actions of D-Allulose may underlie the ability of D-Allulose to counteract obesity and diabetes.


Assuntos
Núcleo Arqueado do Hipotálamo , Pró-Opiomelanocortina , Animais , Núcleo Arqueado do Hipotálamo/metabolismo , Frutose , Peptídeo 1 Semelhante ao Glucagon/metabolismo , Camundongos , Neurônios/metabolismo , Obesidade/tratamento farmacológico , Obesidade/metabolismo , Pró-Opiomelanocortina/metabolismo
9.
Sci Rep ; 12(1): 8599, 2022 05 21.
Artigo em Inglês | MEDLINE | ID: mdl-35597815

RESUMO

Nutrient excess, such as the intake of a high-fat diet, reduces hypothalamic responses to exogenously administered leptin and induces dietary obesity; however, orally active components that attenuate neural leptin dysregulation have yet to be identified. We herein demonstrated that YHIEPV, derived from the pepsin-pancreatin digestion of the green leaf protein Rubisco, increased the leptin-induced phosphorylation of STAT3 in ex vivo hypothalamic slice cultures. We also showed that YHIEPV mitigated palmitic acid-induced decreases in leptin responsiveness. Furthermore, orally administered YHIEPV promoted leptin-induced reductions in body weight and food intake in obese mice. In addition, dietary-induced body weight gain was significantly less in mice orally or centrally administered YHIEPV daily than in saline-control mice. Cellular leptin sensitivity and the levels of proinflammatory-related factors, such as IL1ß and Socs-3, in the hypothalamus of obese mice were also restored by YHIEPV. YHIEPV blocked cellular leptin resistance induced by forskolin, which activates Epac-Rap1 signaling, and reduced the level of the GTP-bound active form of Rap1 in the brains of obese mice. Collectively, the present results demonstrated that the orally active peptide YHIEPV derived from a major green leaf protein increased neural leptin responsiveness and reduced body weight gain in mice with dietary obesity.


Assuntos
Leptina , Ribulose-Bifosfato Carboxilase , Animais , Peso Corporal , Hipotálamo/metabolismo , Leptina/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Obesos , Obesidade/metabolismo , Ribulose-Bifosfato Carboxilase/metabolismo , Aumento de Peso
10.
Peptides ; 144: 170608, 2021 10.
Artigo em Inglês | MEDLINE | ID: mdl-34265369

RESUMO

Appetite is closely regulated not only by gut hormonal and neuronal peptides but also by exogenous peptides derived from food proteins. Food proteins are now recognized to contain many thousands of bioactive compounds that provide additional health benefits beyond their nutritional effects. Bioactive peptides are beneficial to the life and/or to regulate physiological functions. Although animal protein products have been widely applied in the food industry, exploring the possibilities of developing functional foods based on plant protein-derived peptides is considered attractive for achieving sustainable development goals. In addition, peptides from plant proteins have the potential to treat numerous diseases or risk factors and may therefore facilitate a healthy life expectancy. In this review, we discuss the identified plant-based bioactive peptides and their appetite regulating effects. Plant-based bioactive peptides may provide new opportunities to discover novel approaches that can improve and prevent diseases in a sustainable environment.


Assuntos
Regulação do Apetite/efeitos dos fármacos , Peptídeos/farmacologia , Proteínas de Plantas/farmacologia , Adiposidade/efeitos dos fármacos , Animais , Estimulantes do Apetite/farmacologia , Ingestão de Alimentos/efeitos dos fármacos , Humanos , Fragmentos de Peptídeos/farmacologia , Peptídeos/química , Proteínas de Plantas/química , Ribulose-Bifosfato Carboxilase/farmacologia
11.
JCI Insight ; 6(11)2021 06 08.
Artigo em Inglês | MEDLINE | ID: mdl-33974562

RESUMO

The hypothalamus is a critical regulator of glucose metabolism and is capable of correcting diabetes conditions independently of an effect on energy balance. The small GTPase Rap1 in the forebrain is implicated in high-fat diet-induced (HFD-induced) obesity and glucose imbalance. Here, we report that increasing Rap1 activity selectively in the medial hypothalamus elevated blood glucose without increasing the body weight of HFD-fed mice. In contrast, decreasing hypothalamic Rap1 activity protected mice from diet-induced hyperglycemia but did not prevent weight gain. The remarkable glycemic effect of Rap1 was reproduced when Rap1 was specifically deleted in steroidogenic factor-1-positive (SF-1-positive) neurons in the ventromedial hypothalamic nucleus (VMH) known to regulate glucose metabolism. While having no effect on body weight regardless of sex, diet, and age, Rap1 deficiency in the VMH SF1 neurons markedly lowered blood glucose and insulin levels, improved glucose and insulin tolerance, and protected mice against HFD-induced neural leptin resistance and peripheral insulin resistance at the cellular and whole-body levels. Last, acute pharmacological inhibition of brain exchange protein directly activated by cAMP 2, a direct activator of Rap1, corrected glucose imbalance in obese mouse models. Our findings uncover the primary role of VMH Rap1 in glycemic control and implicate Rap1 signaling as a potential target for therapeutic intervention in diabetes.


Assuntos
Glicemia/metabolismo , Hiperglicemia/metabolismo , Insulina/metabolismo , Neurônios/metabolismo , Obesidade/metabolismo , Núcleo Hipotalâmico Ventromedial/metabolismo , Proteínas rap1 de Ligação ao GTP/metabolismo , Animais , Dieta Hiperlipídica , Técnicas de Silenciamento de Genes , Homeostase , Hipotálamo/metabolismo , Resistência à Insulina , Leptina/metabolismo , Camundongos , Fator Esteroidogênico 1/metabolismo , Proteínas rap1 de Ligação ao GTP/genética
12.
FEBS Open Bio ; 11(4): 1144-1152, 2021 04.
Artigo em Inglês | MEDLINE | ID: mdl-33605550

RESUMO

Ghrelin is an endogenous orexigenic hormone mainly produced by stomach cells and is reported to influence appetite, gastrointestinal motility and growth hormone secretion. We observed that enzymatic digest of wheat gluten stimulated ghrelin secretion from mouse ghrelinoma 3-1, a ghrelin-releasing cell line. Further on, we characterized the ghrelin-releasing peptides present in the digest by comprehensive peptide analysis using liquid chromatography-mass spectrometry and structure-activity relationship. Among the candidate peptides, we found that SQQQQPVLPQQPSF, LSVTSPQQVSY and YPTSL stimulated ghrelin release. We then named them wheat-ghretropin A, B and C, respectively. In addition, we observed that wheat-ghretropin A increased plasma ghrelin concentration and food intake in mice after oral administration. Thus, we demonstrated that wheat-ghretropin stimulates ghrelin release both in vitro and in vivo. To the best of our knowledge, this is the first report of a wheat-derived exogenous bioactive peptide that stimulates ghrelin secretion.


Assuntos
Grelina/química , Grelina/metabolismo , Reguladores de Crescimento de Plantas/química , Reguladores de Crescimento de Plantas/metabolismo , Triticum/metabolismo , Sequência de Aminoácidos , Animais , Linhagem Celular , Cromatografia Líquida , Quimotripsina/química , Glutens/química , Hidrólise , Espectrometria de Massas , Camundongos , Camundongos Transgênicos , Proteólise , Relação Estrutura-Atividade
13.
Tohoku J Exp Med ; 253(1): 51-60, 2021 01.
Artigo em Inglês | MEDLINE | ID: mdl-33455971

RESUMO

The cold-sensitivity constitution (CSC), termed "Hiesho" in Japanese, is a woman-specific cold sense of peripheral sites. The etiology of and criteria for CSC are not yet well established. We defined CSC as temperature gradient > 6˚C between body surface and core, and investigated the autonomic nervous activity by measuring heart rate variability and the vascular endothelial function by determining reactive hyperemia index (RHI) in 43 healthy premenopausal women, aged 18-47 years. Twenty five women had CSC during both the follicular and luteal phases of their menstrual cycles (sustained-CSC group), 8 women did not show CSC during both phases (non-CSC group), and the remaining 10 women showed CSC in either menstrual phase (occasional CSC). To identify the pathophysiological bases of CSC, we compared the sympathetic nervous activity and vascular endothelial function between sustained-CSC and non-CSC. We thus found that sympathetic nervous activity was higher among the sustained-CSC group (p = 0.042) during the follicular phase, compared with the non-CSC group, while the RHI was similar in both groups. Furthermore, the sympathetic nervous activity was similar between the sustained-CSC women aged ≥ 40 years (n = 10) and those aged < 40 years (n = 15) during either menstrual phase, whereas the RHI of the women aged < 40 years was lower during the follicular phase (p = 0.045), compared with the women aged ≥ 40 years. In conclusion, CSC is associated with sympathetic nervous hyperactivity in premenopausal women, and vascular endothelial dysfunction is also involved in CSC among younger women.


Assuntos
Sistema Nervoso Autônomo/fisiopatologia , Síndromes Periódicas Associadas à Criopirina/fisiopatologia , Endotélio Vascular/fisiopatologia , Pré-Menopausa/fisiologia , Adolescente , Biomarcadores/metabolismo , Síndromes Periódicas Associadas à Criopirina/complicações , Feminino , Humanos , Hiperemia/complicações , Hiperemia/fisiopatologia , Ciclo Menstrual/fisiologia , Pessoa de Meia-Idade , Adulto Jovem
14.
Endocrinology ; 161(9)2020 09 01.
Artigo em Inglês | MEDLINE | ID: mdl-32603429

RESUMO

The hypothalamus plays a critical role in controlling energy balance. High-fat diet (HFD) feeding increases the gene expression of proinflammatory mediators and decreases insulin actions in the hypothalamus. Here, we show that a gut-derived hormone, glucose-dependent insulinotropic polypeptide (GIP), whose levels are elevated during diet-induced obesity, promotes and mediates hypothalamic inflammation and insulin resistance during HFD-induced obesity. Unbiased ribonucleic acid sequencing of GIP-stimulated hypothalami revealed that hypothalamic pathways most affected by intracerebroventricular (ICV) GIP stimulation were related to inflammatory-related responses. Subsequent analysis demonstrated that GIP administered either peripherally or centrally, increased proinflammatory-related factors such as Il-6 and Socs3 in the hypothalamus, but not in the cortex of C57BL/6J male mice. Consistently, hypothalamic activation of IκB kinase-ß inflammatory signaling was induced by ICV GIP. Further, hypothalamic levels of proinflammatory cytokines and Socs3 were significantly reduced by an antagonistic GIP receptor (GIPR) antibody and by GIPR deficiency. Additionally, centrally administered GIP reduced anorectic actions of insulin in the brain and diminished insulin-induced phosphorylation of Protein kinase B and Glycogen synthase kinase 3ß in the hypothalamus. Collectively, these findings reveal a previously unrecognized role for brain GIP signaling in diet-induced inflammation and insulin resistance in the hypothalamus.


Assuntos
Encefalite/induzido quimicamente , Polipeptídeo Inibidor Gástrico/farmacologia , Hipotálamo/efeitos dos fármacos , Inflamação/induzido quimicamente , Resistência à Insulina , Receptores dos Hormônios Gastrointestinais/fisiologia , Animais , Dieta Hiperlipídica , Encefalite/genética , Polipeptídeo Inibidor Gástrico/administração & dosagem , Polipeptídeo Inibidor Gástrico/fisiologia , Hipotálamo/imunologia , Hipotálamo/patologia , Inflamação/genética , Infusões Intraventriculares , Resistência à Insulina/genética , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Camundongos Obesos , Receptores dos Hormônios Gastrointestinais/genética , Transdução de Sinais/efeitos dos fármacos , Transdução de Sinais/genética , Regulação para Cima/efeitos dos fármacos , Regulação para Cima/genética
15.
Methods Mol Biol ; 2139: 405-414, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32462602

RESUMO

Cereal proteins have formed the basis of human diet worldwide, and their level of consumption is expected to increase. The knowledge of the protein composition and variation of the cereal grains is helpful for characterizing cereal varieties and to identify biomarkers for tolerance mechanisms. Grains produce a wide array of proteins, differing under conditions. Quantitative proteomics is a powerful approach allowing the identification of proteins expressed under defined conditions that may contribute understanding the complex biological systems of grains. Isobaric tags for relative and absolute quantitation (iTRAQ) is a mass spectrometry-based quantitative approach allowing, simultaneously, for protein identification and quantification from multiple samples with high coverage. One of the challenges in identifying grains proteins is their relatively high content (~90-95%) of carbohydrate (starch) and low protein (~4-10%) and lipid (~1%) fractions. In this chapter, we present a robust workflow to carry out iTRAQ quantification of the starchy rice grains.


Assuntos
Espectrometria de Massas/métodos , Oryza/metabolismo , Proteínas de Plantas/metabolismo , Proteoma/análise , Proteômica/métodos , Sementes/metabolismo
16.
Artigo em Inglês | MEDLINE | ID: mdl-32152081

RESUMO

Delamanid (DLM), a nitro-dihydroimidazooxazole derivative currently approved for pulmonary multidrug-resistant tuberculosis (TB) therapy, is a prodrug activated by mycobacterial 7,8-didemethyl-8-hydroxy 5-deazaflavin electron transfer coenzyme (F420)-dependent nitroreductase (Ddn). Despite inhibiting the biosynthesis of a subclass of mycolic acids, the active DLM metabolite remained unknown. Comparative liquid chromatography-mass spectrometry (LC-MS) analysis of DLM metabolites revealed covalent binding of reduced DLM with a nicotinamide ring of NAD derivatives (oxidized form) in DLM-treated Mycobacterium tuberculosis var. Bacille de Calmette et Guérin. Isoniazid-resistant mutations in the type II NADH dehydrogenase gene (ndh) showed a higher intracellular NADH/NAD ratio and cross-resistance to DLM, which were restored by complementation of the mutants with wild-type ndh Our data demonstrated for the first time the adduct formation of reduced DLM with NAD in mycobacterial cells and its importance in the action of DLM.


Assuntos
Antituberculosos/farmacologia , Mycobacterium tuberculosis/efeitos dos fármacos , Mycobacterium tuberculosis/genética , Nitroimidazóis/farmacologia , Oxazóis/farmacologia , Tuberculose Resistente a Múltiplos Medicamentos/genética , Tuberculose Pulmonar/tratamento farmacológico , Cromatografia Líquida , Farmacorresistência Bacteriana Múltipla/genética , Isoniazida/farmacologia , Espectrometria de Massas , Ácidos Micólicos/metabolismo , NAD/análise , NADH Desidrogenase/genética , Oxirredução , Polimorfismo de Nucleotídeo Único/genética , Tuberculose Resistente a Múltiplos Medicamentos/tratamento farmacológico
17.
Int J Mol Sci ; 21(6)2020 Mar 23.
Artigo em Inglês | MEDLINE | ID: mdl-32210132

RESUMO

The long-chain acyl-CoA synthetases (LACSs) are involved in lipid synthesis, fatty acid catabolism, and the transport of fatty acids between subcellular compartments. These enzymes catalyze the critical reaction of fatty acyl chains to fatty acyl-CoAs for the triacylglycerol biosynthesis used as carbon and energy reserves. In Arabidopsis, LACSs are encoded by a family of nine genes, with LACS9 being the only member located in the chloroplast envelope membrane. However, the comprehensive role of LACS9 and its contribution to plant metabolism have not been explored thoroughly. In this study, we report on the identification and characterization of LACS9 mutants in rice plants. Our results indicate that the loss-of-function mutations in OsLACS9 affect the architecture of internodes resulting in dwarf plants with large starch granules in the chloroplast, showing the suppression of starch degradation. Moreover, the plastid localization of α-amylase I-1 (AmyI-1)-a key enzyme involved in starch breakdown in plastids-was suppressed in the lacs9 mutant line. Immunological and confocal laser scanning microscopy analyses showed that OsLACS9-GFP is located in the chloroplast envelope in green tissue. Microscopic analysis showed that OsLACS9s interact with each other in the plastid envelope membrane. Furthermore, OsLACS9 is also one of the proteins transported to plastids without a transit peptide or involvement of the Toc/Tic complex system. To identify the plastid-targeting signal of OsLACS9, the transient expression and localization of a series of N-terminal truncated OsLACS9-green fluorescent protein (GFP) fusion proteins were examined. Truncation analyses identified the N-terminal 30 amino acid residues to be required for OsLACS9 plastid localization. Overall, the data in this study provide an advanced understanding of the function of OsLACS9 and its role in starch degradation and plant growth.


Assuntos
Cloroplastos/metabolismo , Coenzima A Ligases/genética , Coenzima A Ligases/metabolismo , Membranas Intracelulares/metabolismo , Oryza/genética , Oryza/metabolismo , Mutação com Perda de Função , Mutação , Oryza/crescimento & desenvolvimento , Fenótipo , Plastídeos/genética , Plastídeos/metabolismo , Amido/química
18.
Neurosci Lett ; 714: 134550, 2020 01 01.
Artigo em Inglês | MEDLINE | ID: mdl-31634502

RESUMO

BACKGROUND: Cannabinoid receptor 1 (CB1R) is a GPCR expressed widely in the brain as well as in peripheral metabolic organs. Although pharmacological blockade of CB1R has been effective for the treatment of obesity and tobacco addiction, precise distribution of CB1R within the brain and potential changes by obesity or nicotine exposure have not been thoroughly addressed. METHODS: To examine CB1R distribution within the central energy center, we performed immunostaining and qPCR analysis of micro-dissected hypothalamic nuclei from male C57BL/6 mice. To address the effect of nicotine on food intake and body weight, and on potential changes of CB1R levels in the hypothalamus, mice kept on a high fat diet (HFD) for four weeks were challenged with nicotine intraperitoneally. RESULTS: Validity of the micro-dissected samples was confirmed by the expression of established nucleus-enriched genes. The expression levels of CB1R in the arcuate and lateral nuclei of the hypothalamus were higher than paraventricular and ventral-dorsal medial nuclei. Nicotine administration led to a significant suppression of food intake and body weight either under standard or high fat diet. Neither HFD nor nicotine alone altered CB1R levels in any nucleus tested. By contrast, treatment of HFD-fed mice with nicotine led to a significant increase in CB1R levels in the arcuate, paraventricular and lateral nuclei. CONCLUSIONS: CB1R was widely distributed in multiple hypothalamic nuclei. The expression of CB1R was augmented only when mice were treated with HFD and nicotine in combination. These data suggest that the exposure to nicotine may provoke an enhanced endocannabinoid response in diet-induced obesity.


Assuntos
Núcleo Arqueado do Hipotálamo/metabolismo , Dieta Hiperlipídica , Núcleo Hipotalâmico Dorsomedial/metabolismo , Região Hipotalâmica Lateral/metabolismo , Nicotina/farmacologia , Núcleo Hipotalâmico Paraventricular/metabolismo , Receptor CB1 de Canabinoide/biossíntese , Animais , Peso Corporal/efeitos dos fármacos , Ingestão de Alimentos/efeitos dos fármacos , Masculino , Camundongos , Microdissecção/métodos , Neuropeptídeo Y/metabolismo , Receptores de Hormônio Liberador da Corticotropina/metabolismo
19.
Exp Anim ; 69(2): 161-167, 2020 Apr 24.
Artigo em Inglês | MEDLINE | ID: mdl-31735765

RESUMO

Environmental enrichment (EE) can reduce anxiety and stress in experimental animals, while little is known about the influence on autonomic nervous activity especially in disease animal models. Diabetes mellitus (DM) is associated with cardiovascular autonomic dysfunction, which can be characterized by a higher resting heart rate and a lower heart rate variability (HRV). We hypothesized that EE can enhance parasympathetic nervous activity while reducing disease progression in type 2 diabetic mice. A telemetry transmitter was implanted in NSY mice to continuously record electrocardiograms (ECG). Animals were kept in a cage with or without a nest box as EE. The autonomic nervous activity was evaluated using power spectral analysis of HRV. Four weeks of EE could increase high frequency (HF) power, but no change was observed in the absence of EE. Although animals showed impaired glucose tolerance at 48 weeks of age regardless of EE, a worsen case was observed in control. These results indicate that EE can be necessary for long-term housing of experimental animals and may reduce the risk of impaired glucose tolerance in NSY mice by enhancing parasympathetic nervous activity. In future, it is demanded whether increasing parasympathetic nervous activity, whatever the method is, can prevent diabetes from worsening.


Assuntos
Sistema Nervoso Autônomo/fisiologia , Meio Ambiente , Animais , Masculino , Camundongos , Camundongos Endogâmicos
20.
Sci Rep ; 9(1): 18544, 2019 12 06.
Artigo em Inglês | MEDLINE | ID: mdl-31811157

RESUMO

Autophagy plays crucial roles in the recycling of metabolites, and is involved in many developmental processes. Rice mutants defective in autophagy are male sterile due to immature pollens, indicating its critical role in pollen development. However, physiological roles of autophagy during seed maturation had remained unknown. We here found that seeds of the rice autophagy-deficient mutant Osatg7-1, that produces seeds at a very low frequency in paddy fields, are smaller and show chalky appearance and lower starch content in the endosperm at the mature stage under normal growth condition. We comprehensively analyzed the effects of disruption of autophagy on biochemical properties, proteome and seed quality, and found an abnormal activation of starch degradation pathways including accumulation of α-amylases in the endosperm during seed maturation in Osatg7-1. These results indicate critical involvement of autophagy in metabolic regulation in the endosperm of rice, and provide insights into novel autophagy-mediated regulation of starch metabolism during seed maturation.


Assuntos
Proteínas Relacionadas à Autofagia/genética , Autofagia/fisiologia , Endosperma/crescimento & desenvolvimento , Oryza/crescimento & desenvolvimento , Proteínas de Plantas/genética , Proteínas Relacionadas à Autofagia/metabolismo , Endosperma/metabolismo , Regulação da Expressão Gênica no Desenvolvimento , Regulação da Expressão Gênica de Plantas , Mutação , Oryza/genética , Oryza/metabolismo , Proteínas de Plantas/metabolismo , Amido/metabolismo , Regulação para Cima , alfa-Amilases/genética , alfa-Amilases/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA