Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 36
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
FEBS Lett ; 2024 Apr 19.
Artigo em Inglês | MEDLINE | ID: mdl-38639871

RESUMO

Reactive oxygen species (ROS) are associated with oocyte maturation inhibition, and N-acetyl-l-cysteine (NAC) partially reduces their harmful effects. Mitochondrial E3 ubiquitin ligase 1 (Mul1) localizes to the mitochondrial outer membrane. We found that female Mul1-deficient mice are infertile, and their oocytes contain high ROS concentrations. After fertilization, Mul1-deficient embryos showed a DNA damage response (DDR) and abnormal preimplantation embryogenesis, which was rescued by NAC addition and ROS depletion. These observations clearly demonstrate that loss of Mul1 in oocytes increases ROS concentrations and triggers DDR, resulting in abnormal preimplantation embryogenesis. We conclude that manipulating the mitochondrial ROS levels in oocytes may be a potential therapeutic approach to target infertility.

2.
Cell Rep ; 42(8): 112954, 2023 Aug 29.
Artigo em Inglês | MEDLINE | ID: mdl-37595588

RESUMO

During hibernation, some mammals show low body temperatures (<10°C). Tissues from hibernators exhibit cold resistance even when the animal is not hibernating. Mice can also enter hypothermic fasting-induced torpor (FIT), but the cold resistance of FIT has never been related to their tissues. Here, we show that an inbred mouse STM2 exhibits lower body temperature during FIT than C57BL/6J or MYS/Mz. Thus, STM2 resists the cold more than other strains. Analysis of strain-specific mouse embryonic stem (ES) cells shows that STM2 ES cells are more cold-resistant than others and rely on the oxidative phosphorylation (OXPHOS) pathway but respire independently of the electron transfer chain complex I in the cold. We also found that the liver of STM2 uses OXPHOS more in cold than other strains. This study demonstrates that an organismal phenotype associated with torpor can be effectively studied in an in vitro setup using mouse cells.

3.
Matrix Biol Plus ; 18: 100133, 2023 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-37131404

RESUMO

Basement membranes (BMs) are thin, sheet-like extracellular structures that cover the basal side of epithelial and endothelial tissues and provide structural and functional support to adjacent cell layers. The molecular structure of BMs is a fine meshwork that incorporates specialized extracellular matrix proteins. Recently, live visualization of BMs in invertebrates demonstrated that their structure is flexible and dynamically rearranged during cell differentiation and organogenesis. However, the BM dynamics in mammalian tissues remain to be elucidated. We developed a mammalian BM imaging probe based on nidogen-1, a major BM-specific protein. Recombinant human nidogen-1 fused with an enhanced green fluorescent protein (Nid1-EGFP) retains its ability to bind to other BM proteins, such as laminin, type IV collagen, and perlecan, in a solid-phase binding assay. When added to the culture medium of embryoid bodies derived from mouse ES cells, recombinant Nid1-EGFP accumulated in the BM zone of embryoid bodies, and BMs were visualized in vitro. For in vivo BM imaging, a knock-in reporter mouse line expressing human nidogen-1 fused to the red fluorescent protein mCherry (R26-CAG-Nid1-mCherry) was generated. R26-CAG-Nid1-mCherry showed fluorescently labeled BMs in early embryos and adult tissues, such as the epidermis, intestine, and skeletal muscles, whereas BM fluorescence was unclear in several other tissues, such as the lung and heart. In the retina, Nid1-mCherry fluorescence visualized the BMs of vascular endothelium and pericytes. In the developing retina, Nid1-mCherry fluorescence labeled the BM of the major central vessels; however, the BM fluorescence were hardly observed in the peripheral growing tips of the vascular network, despite the presence of endothelial BM. Time-lapse observation of the retinal vascular BM after photobleaching revealed gradual recovery of Nid1-mCherry fluorescence, suggesting the turnover of BM components in developing retinal blood vessels. To the best of our knowledge, this is the first demonstration of in vivo BM imaging using a genetically engineered mammalian model. Although R26-CAG-Nid1-mCherry has some limitations as an in vivo BM imaging model, it has potential applications in the study of BM dynamics during mammalian embryogenesis, tissue regeneration, and pathogenesis.

4.
Cell Rep ; 42(5): 112530, 2023 05 30.
Artigo em Inglês | MEDLINE | ID: mdl-37209098

RESUMO

Nonalcoholic fatty liver disease (NAFLD) is a chronic metabolic disorder caused by overnutrition and can lead to nonalcoholic steatohepatitis (NASH) and hepatocellular carcinoma (HCC). The transcription factor Forkhead box K1 (FOXK1) is implicated in regulation of lipid metabolism downstream of mechanistic target of rapamycin complex 1 (mTORC1), but its role in NAFLD-NASH pathogenesis is understudied. Here, we show that FOXK1 mediates nutrient-dependent suppression of lipid catabolism in the liver. Hepatocyte-specific deletion of Foxk1 in mice fed a NASH-inducing diet ameliorates not only hepatic steatosis but also associated inflammation, fibrosis, and tumorigenesis, resulting in improved survival. Genome-wide transcriptomic and chromatin immunoprecipitation analyses identify several lipid metabolism-related genes, including Ppara, as direct targets of FOXK1 in the liver. Our results suggest that FOXK1 plays a key role in the regulation of hepatic lipid metabolism and that its inhibition is a promising therapeutic strategy for NAFLD-NASH, as well as for HCC.


Assuntos
Carcinoma Hepatocelular , Neoplasias Hepáticas , Hepatopatia Gordurosa não Alcoólica , Animais , Camundongos , Carcinoma Hepatocelular/metabolismo , Ácidos Graxos/metabolismo , Metabolismo dos Lipídeos , Fígado/metabolismo , Neoplasias Hepáticas/patologia , Alvo Mecanístico do Complexo 1 de Rapamicina/metabolismo , Hepatopatia Gordurosa não Alcoólica/metabolismo
5.
Dev Biol ; 497: 26-32, 2023 05.
Artigo em Inglês | MEDLINE | ID: mdl-36868446

RESUMO

Reptiles are important model organisms in developmental and evolutionary biology, but are used less widely than other amniotes such as mouse and chicken. One of the main reasons for this is that has proven difficult to conduct CRISPR/Cas9-mediated genome editing in many reptile species despite the widespread use of this technology in other taxa. Certain features of reptile reproductive systems make it difficult to access one-cell or early-stage zygotes, which represents a key impediment to gene editing techniques. Recently, Rasys and colleagues reported a genome editing method using oocyte microinjection that allowed them to produce genome-edited Anolis lizards. This method opened a new avenue to reverse genetics studies in reptiles. In the present article, we report the development of a related method for genome editing in the Madagascar ground gecko (Paroedura picta), a well-established experimental model, and describe the generation of Tyr and Fgf10 gene-knockout geckos in the F0 generation.


Assuntos
Sistemas CRISPR-Cas , Lagartos , Animais , Camundongos , Sistemas CRISPR-Cas/genética , Lagartos/genética , Microinjeções , Genética Reversa , Edição de Genes/métodos , Oócitos
6.
Cell Rep ; 42(2): 111940, 2023 02 28.
Artigo em Inglês | MEDLINE | ID: mdl-36719796

RESUMO

Choline supplies methyl groups for regeneration of methionine and the methyl donor S-adenosylmethionine in the liver. Here, we report that the catabolism of membrane phosphatidylcholine (PC) into water-soluble glycerophosphocholine (GPC) by the phospholipase/lysophospholipase PNPLA8-PNPLA7 axis enables endogenous choline stored in hepatic PC to be utilized in methyl metabolism. PNPLA7-deficient mice show marked decreases in hepatic GPC, choline, and several metabolites related to the methionine cycle, accompanied by various signs of methionine insufficiency, including growth retardation, hypoglycemia, hypolipidemia, increased energy consumption, reduced adiposity, increased fibroblast growth factor 21 (FGF21), and an altered histone/DNA methylation landscape. Moreover, PNPLA8-deficient mice recapitulate most of these phenotypes. In contrast to wild-type mice fed a methionine/choline-deficient diet, both knockout strains display decreased hepatic triglyceride, likely via reductions of lipogenesis and GPC-derived glycerol flux. Collectively, our findings highlight the biological importance of phospholipid catabolism driven by PNPLA8/PNPLA7 in methyl group flux and triglyceride synthesis in the liver.


Assuntos
Fígado , Lisofosfolipase , Metionina , Fosfatidilcolinas , Animais , Camundongos , Colina/metabolismo , Glicerilfosforilcolina/metabolismo , Fígado/metabolismo , Metionina/metabolismo , Racemetionina/metabolismo , S-Adenosilmetionina/metabolismo , Triglicerídeos/metabolismo , Lisofosfolipase/genética , Lisofosfolipase/metabolismo , Fosfatidilcolinas/metabolismo
7.
PLoS Biol ; 20(10): e3001813, 2022 10.
Artigo em Inglês | MEDLINE | ID: mdl-36194579

RESUMO

The reduced sleep duration previously observed in Camk2b knockout mice revealed a role for Ca2+/calmodulin-dependent protein kinase II (CaMKII)ß as a sleep-promoting kinase. However, the underlying mechanism by which CaMKIIß supports sleep regulation is largely unknown. Here, we demonstrate that activation or inhibition of CaMKIIß can increase or decrease sleep duration in mice by almost 2-fold, supporting the role of CaMKIIß as a core sleep regulator in mammals. Importantly, we show that this sleep regulation depends on the kinase activity of CaMKIIß. A CaMKIIß mutant mimicking the constitutive-active (auto)phosphorylation state promotes the transition from awake state to sleep state, while mutants mimicking subsequent multisite (auto)phosphorylation states suppress the transition from sleep state to awake state. These results suggest that the phosphorylation states of CaMKIIß differently control sleep induction and maintenance processes, leading us to propose a "phosphorylation hypothesis of sleep" for the molecular control of sleep in mammals.


Assuntos
Proteína Quinase Tipo 2 Dependente de Cálcio-Calmodulina , Cálcio , Animais , Cálcio/metabolismo , Proteína Quinase Tipo 2 Dependente de Cálcio-Calmodulina/genética , Proteína Quinase Tipo 2 Dependente de Cálcio-Calmodulina/metabolismo , Mamíferos/metabolismo , Camundongos , Camundongos Knockout , Fosforilação , Sono
8.
Biochem Biophys Res Commun ; 628: 91-97, 2022 11 05.
Artigo em Inglês | MEDLINE | ID: mdl-36084556

RESUMO

The adaptor protein GAREM has two subtypes. Each is involved in Erk activation signaling downstream of the cell growth factor receptor in cultured cells. Regarding their role in individual animals, we have previously reported that mice deficient in GAREM2, which is highly expressed in the brain, exhibit emotional changes. In this paper, we report an amino acid substitution mutation (K291R) in GAREM1, in a patient with idiopathic short stature, which indicates that the mutant exhibits dominant-negative properties. The GAREM K291R mutant did not promote Erk activation in EGF-stimulated cultured cells. Similar features were also observed in cells in which GAREM1 expression was suppressed by genome editing; along with Erk, phosphorylation of S6 kinase and 4EBP1, whose activation is necessary for cell proliferation and biological growth, were inhibited Furthermore, we generated mice deficient in GAREM1 and showed that the mutant mice are lighter in weight. Overall, the results of this paper suggest that GAREM1 is required for normal growth and for maintaing average body size in humans and mice.


Assuntos
Peso Corporal , Nanismo , Proteína Adaptadora GRB2 , Proteínas Adaptadoras de Transdução de Sinal , Animais , Peso Corporal/genética , Proteínas de Ciclo Celular , Linhagem Celular , Nanismo/genética , Fator de Crescimento Epidérmico/metabolismo , Proteína Adaptadora GRB2/metabolismo , Humanos , Sistema de Sinalização das MAP Quinases , Camundongos , Fosforilação , Proteínas Quinases S6 Ribossômicas/metabolismo
9.
Circulation ; 146(2): 125-139, 2022 07 12.
Artigo em Inglês | MEDLINE | ID: mdl-35616010

RESUMO

BACKGROUND: Early neonates of both large and small mammals are able to regenerate the myocardium through cardiomyocyte proliferation for only a short period after birth. This myocardial regenerative capacity declines in parallel with withdrawal of cardiomyocytes from the cell cycle in the first few postnatal days. No mammalian species examined to date has been found capable of a meaningful regenerative response to myocardial injury later than 1 week after birth. METHODS: We examined cardiomyocyte proliferation in neonates of the marsupial opossum (Monodelphis domestica) by immunostaining at various times after birth. The regenerative capacity of the postnatal opossum myocardium was assessed after either apex resection or induction of myocardial infarction at postnatal day 14 or 29, whereas that of the postnatal mouse myocardium was assessed after myocardial infarction at postnatal day 7. Bioinformatics data analysis, immunofluorescence staining, and pharmacological and genetic intervention were applied to determine the role of AMPK (5'-AMP-activated protein kinase) signaling in regulation of the mammalian cardiomyocyte cell cycle. RESULTS: Opossum neonates were found to manifest cardiomyocyte proliferation for at least 2 weeks after birth at a frequency similar to that apparent in early neonatal mice. Moreover, the opossum heart at postnatal day 14 showed substantial regenerative capacity both after apex resection and after myocardial infarction injury, whereas this capacity had diminished by postnatal day 29. Transcriptomic and immunofluorescence analyses indicated that AMPK signaling is activated in postnatal cardiomyocytes of both opossum and mouse. Pharmacological or genetic inhibition of AMPK signaling was sufficient to extend the postnatal window of cardiomyocyte proliferation in both mouse and opossum neonates as well as of cardiac regeneration in neonatal mice. CONCLUSIONS: The marsupial opossum maintains cardiomyocyte proliferation and a capacity for myocardial regeneration for at least 2 weeks after birth. As far as we are aware, this is the longest postnatal duration of such a capacity among mammals examined to date. AMPK signaling was implicated as an evolutionarily conserved regulator of mammalian postnatal cardiomyocyte proliferation.


Assuntos
Proteínas Quinases Ativadas por AMP , Coração , Monodelphis , Infarto do Miocárdio , Regeneração , Proteínas Quinases Ativadas por AMP/metabolismo , Animais , Animais Recém-Nascidos , Proliferação de Células , Coração/fisiologia , Camundongos , Infarto do Miocárdio/metabolismo , Miócitos Cardíacos/metabolismo
10.
Metabolites ; 12(1)2022 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-35050204

RESUMO

Ossification of the posterior longitudinal ligament (OPLL), a disease characterized by the ectopic ossification of a spinal ligament, promotes neurological disorders associated with spinal canal stenosis. While blocking ectopic ossification is mandatory to prevent OPLL development and progression, the mechanisms underlying the condition remain unknown. Here we show that expression of hydroxyacid oxidase 1 (Hao1), a gene identified in a previous genome-wide association study (GWAS) as an OPLL-associated candidate gene, specifically and significantly decreased in fibroblasts during osteoblast differentiation. We then newly established Hao1-deficient mice by generating Hao1-flox mice and crossing them with CAG-Cre mice to yield global Hao1-knockout (CAG-Cre/Hao1flox/flox; Hao1 KO) animals. Hao1 KO mice were born normally and exhibited no obvious phenotypes, including growth retardation. Moreover, Hao1 KO mice did not exhibit ectopic ossification or calcification. However, urinary levels of some metabolites of the tricarboxylic acid (TCA) cycle were significantly lower in Hao1 KO compared to control mice based on comprehensive metabolomic analysis. Our data indicate that Hao1 loss does not promote ectopic ossification, but rather that Hao1 functions to regulate the TCA cycle in vivo.

11.
Cell Mol Gastroenterol Hepatol ; 13(5): 1317-1345, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35074568

RESUMO

BACKGROUND & AIMS: RUNX transcription factors play pivotal roles in embryonic development and neoplasia. We previously identified the single missense mutation R122C in RUNX3 from human gastric cancer. However, how RUNX3R122C mutation disrupts stem cell homeostasis and promotes gastric carcinogenesis remained unclear. METHODS: To understand the oncogenic nature of this mutation in vivo, we generated the RUNX3R122C knock-in mice. Stomach tissues were harvested, followed by histologic and immunofluorescence staining, organoid culture, flow cytometry to isolate gastric corpus isthmus and nonisthmus epithelial cells, and RNA extraction for transcriptomic analysis. RESULTS: The corpus tissue of RUNX3R122C/R122C homozygous mice showed a precancerous phenotype such as spasmolytic polypeptide-expressing metaplasia. We observed mucous neck cell hyperplasia; massive reduction of pit, parietal, and chief cell populations; as well as a dramatic increase in the number of rapidly proliferating isthmus stem/progenitor cells in the corpus of RUNX3R122C/R122C mice. Transcriptomic analyses of the isolated epithelial cells showed that the cell-cycle-related MYC target gene signature was enriched in the corpus epithelial cells of RUNX3R122C/R122C mice compared with the wild-type corpus. Mechanistically, RUNX3R122C mutant protein disrupted the regulation of the restriction point where cells decide to enter either a proliferative or quiescent state, thereby driving stem cell expansion and limiting the ability of cells to terminally differentiate. CONCLUSIONS: RUNX3R122C missense mutation is associated with the continuous cycling of isthmus stem/progenitor cells, maturation arrest, and development of a precancerous state. This work highlights the importance of RUNX3 in the prevention of metaplasia and gastric cancer.


Assuntos
Subunidade alfa 3 de Fator de Ligação ao Core/genética , Lesões Pré-Cancerosas , Neoplasias Gástricas , Animais , Carcinogênese/patologia , Mucosa Gástrica , Metaplasia/genética , Metaplasia/patologia , Camundongos , Mutação Puntual , Lesões Pré-Cancerosas/patologia , Células-Tronco/metabolismo , Neoplasias Gástricas/patologia
12.
Genes Cells ; 27(1): 43-60, 2022 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-34897904

RESUMO

Genomes of higher eukaryotes encode many uncharacterized proteins, and the functions of these proteins cannot be predicted from the primary sequences due to a lack of conserved functional domains. In this study, we focused on a poorly characterized protein UGS148 that is highly expressed in a specialized cell type called tanycytes that line the ventral wall of the third ventricle in the hypothalamus. Immunostaining of UGS148 revealed the fine morphology of tanycytes with highly branched apical ER membranes. Immunoprecipitation revealed that UGS148 associated with mitochondrial ATPase at least in vitro, and ER and mitochondrial signals occasionally overlapped in tanycytes. Mutant mice lacking UGS148 did not exhibit overt phenotypes, suggesting that UGS148 was not essential in mice reared under normal laboratory conditions. We also found that RNA probes that were predicted to uniquely detect UGS148 mRNA cross-reacted with uncharacterized RNAs, highlighting the importance of experimental validation of the specificity of probes during the hybridization-based study of RNA localization.


Assuntos
Retículo Endoplasmático , Proteínas de Membrana , Animais , Retículo Endoplasmático/metabolismo , Células Ependimogliais/metabolismo , Hipotálamo/metabolismo , Proteínas de Membrana/genética , Proteínas de Membrana/metabolismo , Camundongos , RNA Mensageiro
13.
Biochem Biophys Res Commun ; 582: 111-117, 2021 12 10.
Artigo em Inglês | MEDLINE | ID: mdl-34710825

RESUMO

Skeletal muscle is known to regulate bone homeostasis through muscle-bone interaction, although factors that control this activity remain unclear. Here, we newly established Smad3-flox mice, and then generated skeletal muscle-specific Smad2/Smad3 double conditional knockout mice (DcKO) by crossing Smad3-flox with skeletal muscle-specific Ckmm Cre and Smad2-flox mice. We show that immobilization-induced gastrocnemius muscle atrophy occurring due to sciatic nerve denervation was partially but significantly inhibited in DcKO mice, suggesting that skeletal muscle cell-intrinsic Smad2/3 is required for immobilization-induced muscle atrophy. Also, tibial bone atrophy seen after sciatic nerve denervation was partially but significantly inhibited in DcKO mice. Bone formation rate in wild-type mouse tibia was significantly inhibited by immobilization, but inhibition was abrogated in DcKO mice. We propose that skeletal muscle regulates immobilization-induced bone atrophy via Smad2/3, and Smad2/3 represent potential therapeutic targets to prevent both immobilization-induced bone and muscle atrophy.


Assuntos
Músculo Esquelético/metabolismo , Atrofia Muscular/genética , Atrofia Muscular/prevenção & controle , Nervo Isquiático/lesões , Proteína Smad2/genética , Proteína Smad3/genética , Animais , Cruzamentos Genéticos , Feminino , Regulação da Expressão Gênica , Integrases/genética , Integrases/metabolismo , Masculino , Camundongos , Camundongos Knockout , Denervação Muscular/métodos , Proteínas Musculares/genética , Proteínas Musculares/metabolismo , Músculo Esquelético/inervação , Músculo Esquelético/patologia , Atrofia Muscular/metabolismo , Atrofia Muscular/patologia , Proteínas Ligases SKP Culina F-Box/genética , Proteínas Ligases SKP Culina F-Box/metabolismo , Transdução de Sinais , Proteína Smad2/deficiência , Proteína Smad3/deficiência , Tíbia/inervação , Tíbia/metabolismo , Proteínas com Motivo Tripartido/genética , Proteínas com Motivo Tripartido/metabolismo , Ubiquitina-Proteína Ligases/genética , Ubiquitina-Proteína Ligases/metabolismo
14.
Curr Biol ; 31(17): 3956-3963.e4, 2021 09 13.
Artigo em Inglês | MEDLINE | ID: mdl-34293331

RESUMO

Marsupials represent one of three extant mammalian subclasses with very unique characteristics not shared by other mammals. Most notably, much of the development of neonates immaturely born after a relatively short gestation takes place in the external environment. Among marsupials, the gray short-tailed opossum (Monodelphis domestica; hereafter "the opossum") is one of very few established laboratory models. Due to many biologically unique characteristics and experimentally advantageous features, the opossum is used as a prototype species for basic research on marsupial biology.1,2 However, in vivo studies of gene function in the opossum, and thus marsupials in general, lag far behind those of eutherian mammals due to the lack of reliable means to manipulate their genomes. In this study, we describe the successful generation of genome edited opossums by a combination of refined methodologies in reproductive biology and embryo manipulation. We took advantage of the opossum's resemblance to popular rodent models, such as the mouse and rat, in body size and breeding characteristics. First, we established a tractable pipeline of reproductive technologies, from induction of ovulation, timed copulation, and zygote collection to embryo transfer to pseudopregnant females, that warrant an essential platform to manipulate opossum zygotes. Further, we successfully demonstrated the generation of gene knockout opossums at the Tyr locus by microinjection of pronuclear stage zygotes using CRISPR/Cas9 genome editing, along with germline transmission of the edited alleles to the F1 generation. This study provides a critical foundation for venues to expand mammalian reverse genetics into the metatherian subclass.


Assuntos
Monodelphis , Animais , Sistemas CRISPR-Cas , Feminino , Edição de Genes , Genoma , Camundongos , Monodelphis/genética , Ratos
15.
Development ; 147(9)2020 05 12.
Artigo em Inglês | MEDLINE | ID: mdl-32398354

RESUMO

Osteoblasts arise from bone-surrounding connective tissue containing tenocytes and fibroblasts. Lineages of these cell populations and mechanisms of their differentiation are not well understood. Screening enhancer-trap lines of zebrafish allowed us to identify Ebf3 as a transcription factor marking tenocytes and connective tissue cells in skeletal muscle of embryos. Knockout of Ebf3 in mice had no effect on chondrogenesis but led to sternum ossification defects as a result of defective generation of Runx2+ pre-osteoblasts. Conditional and temporal Ebf3 knockout mice revealed requirements of Ebf3 in the lateral plate mesenchyme cells (LPMs), especially in tendon/muscle connective tissue cells, and a stage-specific Ebf3 requirement at embryonic day 9.5-10.5. Upregulated expression of connective tissue markers, such as Egr1/2 and Osr1, increased number of Islet1+ mesenchyme cells, and downregulation of gene expression of the Runx2 regulator Shox2 in Ebf3-deleted thoracic LPMs suggest crucial roles of Ebf3 in the onset of lateral plate mesoderm differentiation towards osteoblasts forming sternum tissues.


Assuntos
Fatores de Transcrição/metabolismo , Animais , Fatores de Transcrição Hélice-Alça-Hélice Básicos/metabolismo , Subunidade alfa 1 de Fator de Ligação ao Core/metabolismo , Embrião não Mamífero/metabolismo , Feminino , Fibroblastos/metabolismo , Hibridização In Situ , Proteínas com Homeodomínio LIM/metabolismo , Camundongos , Camundongos Knockout , Osteoblastos/metabolismo , Gravidez , RNA-Seq , Esterno/metabolismo , Fatores de Transcrição/genética , Peixe-Zebra , Proteínas de Peixe-Zebra/genética , Proteínas de Peixe-Zebra/metabolismo
16.
J Biol Chem ; 295(6): 1658-1672, 2020 02 07.
Artigo em Inglês | MEDLINE | ID: mdl-31915251

RESUMO

The proteasome is a protein-degrading molecular complex that is necessary for protein homeostasis and various biological functions, including cell cycle regulation, signal transduction, and immune response. Proteasome activity is finely regulated by a variety of proteasome-interacting molecules. PITHD1 is a recently described molecule that has a domain putatively capable of interacting with the proteasome. However, it is unknown whether PITHD1 can actually bind to proteasomes and what it does in vivo Here we report that PITHD1 is detected specifically in the spermatids in the testis and the cortical thymic epithelium in the thymus. Interestingly, PITHD1 associates with immunoproteasomes in the testis, but not with thymoproteasomes in the thymus. Mice deficient in PITHD1 exhibit severe male infertility accompanied with morphological abnormalities and impaired motility of spermatozoa. Furthermore, PITHD1 deficiency reduces proteasome activity in the testis and alters the amount of proteins that are important for fertilization capability by the sperm. However, the PITHD1-deficient mice demonstrate no detectable defects in the thymus, including T cell development. Collectively, our results identify PITHD1 as a proteasome-interacting protein that plays a nonredundant role in the male reproductive system.


Assuntos
Complexo de Endopeptidases do Proteassoma/metabolismo , Animais , Fertilização , Deleção de Genes , Infertilidade Masculina/genética , Infertilidade Masculina/metabolismo , Masculino , Camundongos Endogâmicos C57BL , Camundongos Endogâmicos ICR , Motilidade dos Espermatozoides , Espermátides/metabolismo , Testículo/metabolismo
17.
Cardiovasc Res ; 116(1): 237-249, 2020 01 01.
Artigo em Inglês | MEDLINE | ID: mdl-30874788

RESUMO

AIMS: Secreted factors produced by adipose tissue are involved in the pathogenesis of cardiovascular disease. We previously identified adipolin, also known as C1q/TNF-related protein 12, as an insulin-sensitizing adipokine. However, the role of adipolin in vascular disease remains unknown. Here, we investigated whether adipolin modulates pathological vascular remodelling. METHODS AND RESULTS: Adipolin-knockout (APL-KO) and wild-type (WT) mice were subjected to wire-induced injury of the femoral artery. APL-KO mice showed increased neointimal thickening after vascular injury compared with WT mice, which was accompanied by an enhanced inflammatory response and vascular cell proliferation in injured arteries. Adipolin deficiency also led to a reduction in transforming growth factor-ß (TGF-ß) 1 protein levels in injured arteries. Treatment of cultured macrophages with adipolin protein led to a reduction in lipopolysaccharide-stimulated expression of inflammatory mediators, including tumour necrosis factor (TNF)-α, interleukin (IL) 6, and monocyte chemotactic protein (MCP)-1. These effects were reversed by inhibition of TGF-ß receptor II (TGF-ßRII)/Smad2 signalling. Adipolin also reduced platelet-derived growth factor (PDGF)-BB-stimulated proliferation of vascular smooth muscle cells (VSMCs) through a TGF-ßRII/Smad2-dependent pathway. Furthermore, adipolin treatment significantly increased TGF-ß1 concentration in media from cultured VSMCs and macrophages. CONCLUSION: These data indicate that adipolin protects against the development of pathological vascular remodelling by attenuating macrophage inflammatory responses and VSMC proliferation.


Assuntos
Adipocinas/metabolismo , Proliferação de Células , Mediadores da Inflamação/metabolismo , Macrófagos Peritoneais/metabolismo , Músculo Liso Vascular/metabolismo , Miócitos de Músculo Liso/metabolismo , Remodelação Vascular , Lesões do Sistema Vascular/metabolismo , Adipocinas/deficiência , Adipocinas/genética , Animais , Modelos Animais de Doenças , Artéria Femoral/lesões , Artéria Femoral/metabolismo , Artéria Femoral/patologia , Artéria Femoral/fisiopatologia , Células HEK293 , Células Endoteliais da Veia Umbilical Humana/metabolismo , Células Endoteliais da Veia Umbilical Humana/patologia , Humanos , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Músculo Liso Vascular/lesões , Músculo Liso Vascular/patologia , Músculo Liso Vascular/fisiopatologia , Miócitos de Músculo Liso/patologia , Neointima , Fosforilação , Células RAW 264.7 , Receptor do Fator de Crescimento Transformador beta Tipo II/genética , Receptor do Fator de Crescimento Transformador beta Tipo II/metabolismo , Transdução de Sinais , Proteína Smad2/genética , Proteína Smad2/metabolismo , Lesões do Sistema Vascular/genética , Lesões do Sistema Vascular/patologia , Lesões do Sistema Vascular/fisiopatologia
18.
J Invest Dermatol ; 140(2): 298-308.e5, 2020 02.
Artigo em Inglês | MEDLINE | ID: mdl-31445004

RESUMO

Holocrine secretion is a specific mode of secretion involving secretion of entire cytoplasmic materials with remnants of dead cells, as observed in multicellular exocrine glands of reptiles, birds, and mammals. Here, we found that sebaceous glands in mice, representative of multicellular exocrine glands of mammals, exhibit a form of polarized stratified epithelium equipped with tight junctions (TJs), and found that holocrine secretion occurred outside the TJ barriers. Sebaceous glands share characteristics of stratified epithelia with interfollicular epidermis, including basal-layer-restricted cell proliferation, TJ barrier formation at a specific single layer of cells with apico-basolateral plasma membrane polarity, and cell death outside the TJ barrier. Knockout of claudin-1, a transmembrane adhesive protein in TJs, in mice caused leakage of the TJ barrier in sebaceous glands and incomplete degradation of the plasma membrane and nuclei during holocrine secretion. Claudin-1 knockout resulted in the accumulation of incompletely degenerated sebocytes in sebaceous ducts, suggesting that the TJ barrier was necessary for differentiation of holocrine secretion. The redefinition of sebaceous glands as TJ-forming stratified epithelia provides an important framework to understand the molecular mechanism of holocrine secretion.


Assuntos
Membrana Celular/metabolismo , Claudina-1/metabolismo , Células Epiteliais/metabolismo , Glândulas Sebáceas/metabolismo , Animais , Diferenciação Celular , Núcleo Celular/metabolismo , Células Cultivadas , Claudina-1/genética , Feminino , Camundongos , Camundongos Knockout , Glândulas Sebáceas/citologia , Junções Íntimas/metabolismo
19.
Circulation ; 141(7): 571-588, 2020 02 18.
Artigo em Inglês | MEDLINE | ID: mdl-31665900

RESUMO

BACKGROUND: The maternal circulatory system and hormone balance both change dynamically during pregnancy, delivery, and the postpartum period. Although atrial natriuretic peptides and brain natriuretic peptides produced in the heart control circulatory homeostasis through their common receptor, NPR1, the physiologic and pathophysiologic roles of endogenous atrial natriuretic peptide/brain natriuretic peptide in the perinatal period are not fully understood. METHODS: To clarify the physiologic and pathophysiologic roles of the endogenous atrial natriuretic peptide/brain natriuretic peptide-NPR1 system during the perinatal period, the phenotype of female wild-type and conventional or tissue-specific Npr1-knockout mice during the perinatal period was examined, especially focusing on maternal heart weight, blood pressure, and cardiac function. RESULTS: In wild-type mice, lactation but not pregnancy induced reversible cardiac hypertrophy accompanied by increases in fetal cardiac gene mRNAs and ERK1/2 (extracellular signaling-regulated kinase) phosphorylation. Npr1-knockout mice exhibited significantly higher plasma aldosterone level than did wild-type mice, severe cardiac hypertrophy accompanied by fibrosis, and left ventricular dysfunction in the lactation period. Npr1-knockout mice showed a high mortality rate over consecutive pregnancy-lactation cycles. In the hearts of Npr1-knockout mice during or after the lactation period, an increase in interleukin-6 mRNA expression, phosphorylation of signal transducer and activator of transcription 3, and activation of the calcineurin-nuclear factor of the activated T cells pathway were observed. Pharmacologic inhibition of the mineralocorticoid receptor or neuron-specific deletion of the mineralocorticoid receptor gene significantly ameliorated cardiac hypertrophy in lactating Npr1-knockout mice. Anti-interleukin-6 receptor antibody administration tended to reduce cardiac hypertrophy in lactating Npr1-knockout mice. CONCLUSIONS: These results suggest that the characteristics of lactation-induced cardiac hypertrophy in wild-type mice are different from exercise-induced cardiac hypertrophy, and that the endogenous atrial natriuretic peptide/brain natriuretic peptide-NPR1 system plays an important role in protecting the maternal heart from interleukin-6-induced inflammation and remodeling in the lactation period, a condition mimicking peripartum cardiomyopathy.


Assuntos
Fator Natriurético Atrial/deficiência , Cardiomegalia/metabolismo , Lactação , Sistema de Sinalização das MAP Quinases , Período Periparto , Receptores do Fator Natriurético Atrial/deficiência , Animais , Cardiomegalia/genética , Cardiomegalia/patologia , Feminino , Camundongos , Camundongos Knockout
20.
Sci Rep ; 9(1): 20107, 2019 12 27.
Artigo em Inglês | MEDLINE | ID: mdl-31882856

RESUMO

CRMP-5-associated GTPase (CRAG), a short splicing variant of centaurin-γ3/AGAP3, is predominantly expressed in the developing brain. We previously demonstrated that CRAG, but not centaurin-γ3, translocates to the nucleus and activates the serum response factor (SRF)-c-Fos pathway in cultured neuronal cells. However, the physiological relevance of CRAG in vivo is unknown. Here, we found that CRAG/centaurin-γ3-knockout mice showed intensively suppressed kainic acid-induced c-fos expression in the hippocampus. Analyses of molecular mechanisms underlying CRAG-mediated SRF activation revealed that CRAG has an essential role in GTPase activity, interacts with ELK1 (a co-activator of SRF), and activates SRF in an ELK1-dependent manner. Furthermore, CRAG and ELK1 interact with promyelocytic leukaemia bodies through SUMO-interacting motifs, which is required for SRF activation. These results suggest that CRAG plays a critical role in ELK1-dependent SRF-c-fos activation at promyelocytic leukaemia bodies in the developing brain.


Assuntos
Processamento Alternativo , Proteínas de Ligação ao GTP/genética , Proteínas Ativadoras de GTPase/genética , Fator de Resposta Sérica/metabolismo , Proteínas Elk-1 do Domínio ets/genética , Animais , Hipocampo/metabolismo , Ácido Caínico/farmacologia , Camundongos , Camundongos Knockout , Neurônios/metabolismo , Proteína da Leucemia Promielocítica/metabolismo , Proteínas Proto-Oncogênicas c-fos/genética , Proteínas Proto-Oncogênicas c-fos/metabolismo , Sumoilação
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA