Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 130
Filtrar
1.
Antimicrob Agents Chemother ; 68(5): e0028024, 2024 May 02.
Artigo em Inglês | MEDLINE | ID: mdl-38587391

RESUMO

Testing Plasmodium vivax antimicrobial sensitivity is limited to ex vivo schizont maturation assays, which preclude determining the IC50s of delayed action antimalarials such as doxycycline. Using Plasmodium cynomolgi as a model for P. vivax, we determined the physiologically significant delayed death effect induced by doxycycline [IC50(96 h), 1,401 ± 607 nM]. As expected, IC50(96 h) to chloroquine (20.4 nM), piperaquine (12.6 µM), and tafenoquine (1,424 nM) were not affected by extended exposure.


Assuntos
Aminoquinolinas , Antimaláricos , Doxiciclina , Piperazinas , Plasmodium cynomolgi , Plasmodium vivax , Doxiciclina/farmacologia , Antimaláricos/farmacologia , Aminoquinolinas/farmacologia , Plasmodium vivax/efeitos dos fármacos , Plasmodium cynomolgi/efeitos dos fármacos , Cloroquina/farmacologia , Animais , Malária Vivax/tratamento farmacológico , Malária Vivax/parasitologia , Quinolinas/farmacologia , Concentração Inibidora 50 , Humanos , Testes de Sensibilidade Parasitária
2.
Bioorg Med Chem ; 98: 117581, 2024 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-38176113

RESUMO

Although KRAS protein had been classified as an undruggable target, inhibitors of KRAS G12C mutant protein were recently reported to show clinical efficacy in solid tumors. In our previous report, we identified 1-{2,7-diazaspiro[3.5]non-2-yl}prop-2-en-1-one derivative (1) as a KRAS G12C inhibitor that covalently binds to Cys12 of KRAS G12C protein. Compound 1 exhibited potent cellular pERK inhibition and cell growth inhibition against a KRAS G12C mutation-positive cell line and showed an antitumor effect on subcutaneous administration in an NCI-H1373 (KRAS G12C mutation-positive cell line) xenograft mouse model in a dose-dependent manner. In this report, we further optimized the substituents on the quinazoline scaffold based on the structure-based drug design from the co-crystal structure analysis of compound 1 and KRAS G12C to enhance in vitro activity. As a result, ASP6918 was found to exhibit extremely potent in vitro activity and induce dose-dependent tumor regression in an NCI-H1373 xenograft mouse model after oral administration.


Assuntos
Neoplasias Pulmonares , Neoplasias , Humanos , Animais , Camundongos , Proteínas Proto-Oncogênicas p21(ras)/genética , Mutação , Relação Estrutura-Atividade , Neoplasias Pulmonares/tratamento farmacológico
3.
Sci Rep ; 13(1): 20258, 2023 11 20.
Artigo em Inglês | MEDLINE | ID: mdl-37985797

RESUMO

In recent phylogenetic studies, bat Polychromophilus and ungulate Plasmodium, two relatively understudied haemosporidian parasites within the Apicomplexa phylum, have often been overlooked. Instead, the focus has been primarily on haemosporidian parasites in primates, rodents, and birds. Several phylogenetic analyses of bat Polychromophilus have relied on limited datasets and short informative DNA sequences. As a result of these inherent limitations, the substantiation of their evolutionary stance has encountered a diminished degree of robust validation. This study successfully obtained complete mitochondrial genome sequences from 11 Polychromophilus parasites originating from Hipposideros gentilis and Myotis siligoensis bats for the first time. Additionally, the authors have sequenced the apicoplast caseinolytic protease C genes from Polychromophilus murinus and a potentially new Polychromophilus species. These mitochondrial genomes range in length from 5994 to 6001 bp and consist of three protein-coding genes (PCGs), seven small subunit ribosomal RNA genes (SSU rRNA), 12 large subunit ribosomal RNA genes (LSU rRNA), and seven miscellaneous RNA genes. Phylogenetic analyses using Bayesian Inference and Maximum Likelihood methods indicated robust support for the grouping of ungulate Plasmodium and bat Polychromophilus in a single clade separate from other Plasmodium spp., confirming previous reports, albeit with stronger evidence in this study. The divergence between Polychromophilus in bats and Plasmodium in ungulates occurred approximately 29.61 to 55.77 million years ago (Mya), with a node age estimated at 40.63 Mya. These findings highlight that the genus Plasmodium, which includes species found in ungulates, birds, reptiles, and other mammals, does not form a monophyletic group. By incorporating Polychromophilus in bats and Plasmodium in ungulates, this study contributes significantly to understanding the phylogenetic relationships within the Haemosporida order. It provides valuable insights into the evolutionary history and interconnections among these diverse parasites, thereby expanding knowledge in this field.


Assuntos
Quirópteros , Genoma Mitocondrial , Haemosporida , Parasitos , Plasmodium , Animais , Quirópteros/genética , Filogenia , Teorema de Bayes , Plasmodium/genética , Mamíferos/genética , Haemosporida/genética , Parasitos/genética , Roedores/genética , Primatas/genética
4.
Molecules ; 28(12)2023 Jun 11.
Artigo em Inglês | MEDLINE | ID: mdl-37375252

RESUMO

The Asteraceae family is a promising source of bioactive compounds, such as the famous Asteraceae plants Tanacetum cinerariifolium (pyrethrin) and Artemisia annua (artemisinin). As a result of our series of phytochemical studies of the subtropical plants, two novel sesquiterpenes, named crossoseamines A and B in this study (1 and 2, respectively), one undescribed coumarin-glucoside (3), and eighteen known compounds (4-21) were isolated from the aerial part of Crossostephium chinense (Asteraceae). The structures of isolated compounds were elucidated by spectroscopic methods, including 1D and 2D NMR experiments (1H, 13C, DEPT, COSY, HSQC, HMBC, and NOESY), IR spectrum, circular dichroism spectrum (CD), and high-resolution electrospray ionization-mass spectrometry (HR-ESI-MS). All isolated compounds were evaluated for their cytotoxic activities against Leishmania major, Plasmodium falciparum, Trypanosoma brucei (gambiense and rhodesiense), and human lung cancer cell line A549 because of the high demand for the discovery of new drug leads to overcome the present side effects and emerging drug-resistant strains. As a result, the new compounds (1 and 2) showed significant activities against A549 (IC50, 1: 3.3 ± 0.3; 2: 12.3 ± 1.0 µg/mL), L. major (IC50, 1: 6.9 ± 0.6; 2: 24.9 ± 2.2 µg/mL), and P. falciparum (IC50, 1: 12.1 ± 1.1; 2: 15.6 ± 1.2 µg/mL).


Assuntos
Antineoplásicos , Asteraceae , Sesquiterpenos , Humanos , Glucosídeos/química , Aminoácidos , Asteraceae/química , Sesquiterpenos/química , Cumarínicos/farmacologia , Estrutura Molecular
5.
Biomolecules ; 13(3)2023 03 02.
Artigo em Inglês | MEDLINE | ID: mdl-36979393

RESUMO

Plasmodium malaria parasites use erythrocyte-binding-like (EBL) ligands to invade erythrocytes in their vertebrate host. EBLs are released from micronemes, which are secretory organelles located at the merozoite apical end and bind to erythrocyte surface receptors. Because of their essential nature, EBLs have been studied as vaccine candidates, such as the Plasmodium vivax Duffy binding protein. Previously, we showed through using the rodent malaria parasite Plasmodium yoelii that a single amino acid substitution within the EBL C-terminal Cys-rich domain (region 6) caused mislocalization of this molecule and resulted in alteration of the infection course and virulence between the non-lethal 17X and lethal 17XL strains. In the present study, we generated a panel of transgenic P. yoelii lines in which seven of the eight conserved Cys residues in EBL region 6 were independently substituted to Ala residues to observe the consequence of these substitutions with respect to EBL localization, the infection course, and virulence. Five out of seven transgenic lines showed EBL mislocalizations and higher parasitemias. Among them, three showed increased virulence, whereas the other two did not kill the infected mice. The remaining two transgenic lines showed low parasitemias similar to their parental 17X strain, and their EBL localizations did not change. The results indicate the importance of Cys residues in EBL region 6 for EBL localization, parasite infection course, and virulence and suggest an association between EBL localization and the parasite infection course.


Assuntos
Malária , Plasmodium yoelii , Animais , Camundongos , Ligantes , Cisteína/metabolismo , Plasmodium yoelii/genética , Plasmodium yoelii/metabolismo , Parasitemia , Sequência de Aminoácidos , Proteínas de Protozoários/metabolismo , Moléculas de Adesão Celular/metabolismo , Malária/metabolismo , Eritrócitos/metabolismo
6.
Malar J ; 22(1): 102, 2023 Mar 20.
Artigo em Inglês | MEDLINE | ID: mdl-36941587

RESUMO

BACKGROUND: Understanding Plasmodium falciparum population diversity and transmission dynamics provides information on the intensity of malaria transmission, which is needed for assessing malaria control interventions. This study aimed to determine P. falciparum allelic diversity and multiplicity of infection (MOI) among asymptomatic and symptomatic school-age children in Kinshasa Province, Democratic Republic of Congo (DRC). METHODS: A total of 438 DNA samples (248 asymptomatic and 190 symptomatic) were characterized by nested PCR and genotyping the polymorphic regions of pfmsp1 block 2 and pfmsp2 block 3. RESULTS: Nine allele types were observed in pfmsp1 block2. The K1-type allele was predominant with 78% (229/293) prevalence, followed by the MAD20-type allele (52%, 152/293) and RO33-type allele (44%, 129/293). Twelve alleles were detected in pfmsp2, and the 3D7-type allele was the most frequent with 84% (256/304) prevalence, followed by the FC27-type allele (66%, 201/304). Polyclonal infections were detected in 63% (95% CI 56, 69) of the samples, and the MOI (SD) was 1.99 (0.97) in P. falciparum single-species infections. MOIs significantly increased in P. falciparum isolates from symptomatic parasite carriers compared with asymptomatic carriers (2.24 versus 1.69, adjusted b: 0.36, (95% CI 0.01, 0.72), p = 0.046) and parasitaemia > 10,000 parasites/µL compared to parasitaemia < 5000 parasites/µL (2.68 versus 1.63, adjusted b: 0.89, (95% CI 0.46, 1.25), p < 0.001). CONCLUSION: This survey showed low allelic diversity and MOI of P. falciparum, which reflects a moderate intensity of malaria transmission in the study areas. MOIs were more likely to be common in symptomatic infections and increased with the parasitaemia level. Further studies in different transmission zones are needed to understand the epidemiology and parasite complexity in the DRC.


Assuntos
Malária Falciparum , Plasmodium falciparum , Humanos , Criança , República Democrática do Congo/epidemiologia , Proteína 1 de Superfície de Merozoito/genética , Antígenos de Protozoários/genética , Proteínas de Protozoários/genética , Variação Genética , Malária Falciparum/epidemiologia , Malária Falciparum/parasitologia , Parasitemia/parasitologia
7.
Sci Rep ; 13(1): 145, 2023 01 04.
Artigo em Inglês | MEDLINE | ID: mdl-36599869

RESUMO

Unlike malaria parasites in humans, non-human primates, rodents, and birds, ungulate malaria parasites and their vectors have received little attention. As a result, understanding of the hosts, vectors, and biology of ungulate malaria parasites has remained limited. In this study, we aimed to identify the vectors of the goat malaria parasite Plasmodium caprae. A total of 1019 anopheline and 133 non-anopheline mosquitoes were collected from goat farms in Thailand, where P. caprae-infected goats were discovered. Anopheline mosquitoes were identified using molecular biological methods that target the cytochrome c oxidase subunit 1 (cox1), the cytochrome c oxidase subunit 2 (cox2) genes, and the internal transcribed spacer 2 (ITS2) region. Pool and individual mosquitoes were tested for P. caprae using the head-thorax parts that contain the salivary glands, with primers targeting three genetic markers including cytochrome b, cytochrome c oxidase subunit 1, and 18S small subunit ribosomal RNA genes. Additionally, goat blood samples were collected concurrently with mosquito surveys and screened to determine the status of malaria infection. This study revealed nine mosquito species belonging to six groups on goat farms, including Hyrcanus, Barbirostris, Subpictus, Funestus, Tessellatus, and Annularis. The DNA of P. caprae was detected in Anopheles subpictus and Anopheles aconitus. This is the first time An. subpictus and An. aconitus have been implicated as probable vectors of P. caprae.


Assuntos
Anopheles , Malária , Plasmodium , Animais , Anopheles/parasitologia , Complexo IV da Cadeia de Transporte de Elétrons/genética , Cabras/parasitologia , Malária/parasitologia , Mosquitos Vetores , Plasmodium/genética , Tailândia
8.
Trans R Soc Trop Med Hyg ; 117(6): 460-469, 2023 06 02.
Artigo em Inglês | MEDLINE | ID: mdl-36715092

RESUMO

BACKGROUND: Visceral leishmaniasis (VL) is an important re-emerging neglected tropical disease associated with poverty. Despite the elimination initiative started in 2005, VL cases have been expanding into geographic areas in Nepal. The present study aims at exploring the trends of VL from 1980 to 2019. METHODS: This retrospective analysis covers 40 y of VL cases reported by the Epidemiology Diseases Control Division, Nepal. Subgroup analyses for annual incidence were performed by age, sex, seasons, districts and provinces, and VL cases were visualized on in-country maps. RESULTS: A total of 34 564 cases and 584 deaths of VL were reported during 1980-2019. VL persistently increased until 2006 and was reported from all seven provinces of the country. The highest number of confirmed cases (n=2229) was reported in 2003 and the lowest (n=60) in 1983. VL cases expanded from 12 to 23 endemic districts. The key components of the VL elimination program are early diagnosis; enhanced surveillance; integrated vector management; social mobilization; research and treatment. CONCLUSIONS: Expansion of VL towards the hilly and mountain regions of Nepal has posed challenges to the elimination program. Urgent VL control measures are required to achieve the elimination goals.


Assuntos
Leishmania donovani , Leishmaniose Visceral , Humanos , Leishmaniose Visceral/epidemiologia , Leishmaniose Visceral/prevenção & controle , Nepal/epidemiologia , Estudos Retrospectivos , Incidência , Estações do Ano
9.
J Infect Dis ; 227(10): 1121-1126, 2023 05 12.
Artigo em Inglês | MEDLINE | ID: mdl-36478252

RESUMO

The lack of a long-term in vitro culture method has severely restricted the study of Plasmodium vivax, in part because it limits genetic manipulation and reverse genetics. We used the recently optimized Plasmodium cynomolgi Berok in vitro culture model to investigate the putative P. vivax drug resistance marker MDR1 Y976F. Introduction of this mutation using clustered regularly interspaced short palindromic repeats-CRISPR-associated protein 9 (CRISPR-Cas9) increased sensitivity to mefloquine, but had no significant effect on sensitivity to chloroquine, amodiaquine, piperaquine, and artesunate. To our knowledge, this is the first reported use of CRISPR-Cas9 in P. cynomolgi, and the first reported integrative genetic manipulation of this species.


Assuntos
Antimaláricos , Plasmodium cynomolgi , Mefloquina/farmacologia , Antimaláricos/farmacologia , Cloroquina/farmacologia , Plasmodium vivax/genética , Resistência a Medicamentos/genética , Resistência a Múltiplos Medicamentos/genética , Plasmodium falciparum
10.
Sci Rep ; 12(1): 14942, 2022 Sep 02.
Artigo em Inglês | MEDLINE | ID: mdl-36056126

RESUMO

Zoonotic malaria due to Plasmodium knowlesi infection in Southeast Asia is sometimes life-threatening. Post-mortem examination of human knowlesi malaria cases showed sequestration of P. knowlesi-infected red blood cells (iRBCs) in blood vessels, which has been proposed to be linked to disease severity. This sequestration is likely mediated by the cytoadhesion of parasite-iRBCs to vascular endothelial cells; however, the responsible parasite ligands remain undetermined. This study selected P. knowlesi lines with increased iRBC cytoadhesion activity by repeated panning against human umbilical vein endothelial cells (HUVECs). Transcriptome analysis revealed that the transcript level of one gene, encoding a Schizont Infected Cell Agglutination (SICA) protein, herein termed SICA-HUVEC, was more than 100-fold increased after the panning. Transcripts of other P. knowlesi proteins were also significantly increased, such as PIR proteins exported to the iRBC cytosol, suggesting their potential role in increasing cytoadhesion activity. Transgenic P. knowlesi parasites expressing Myc-fused SICA-HUVEC increased cytoadhesion activity following infection of monkey as well as human RBCs, confirming that SICA-HUVEC conveys activity to bind to HUVECs.


Assuntos
Malária , Plasmodium knowlesi , Aglutinação , Animais , Eritrócitos/metabolismo , Haplorrinos , Células Endoteliais da Veia Umbilical Humana , Humanos , Malária/parasitologia , Plasmodium knowlesi/genética , Esquizontes
11.
Bioorg Med Chem ; 71: 116949, 2022 10 01.
Artigo em Inglês | MEDLINE | ID: mdl-35926326

RESUMO

RAS protein plays a key role in cellular proliferation and differentiation. RAS gene mutation is a known driver of oncogenic alternation in human cancer. RAS inhibition is an effective therapeutic treatment for solid tumors, but RAS protein has been classified as an undruggable target. Recent reports have demonstrated that a covalent binder to KRAS protein at a mutated cysteine residue (G12C) is effective for the treatment of solid tumors. Here, we report a series of 1-{2,7-diazaspiro[3.5]nonan-2-yl}prop-2-en-1-one derivatives as potent covalent inhibitors against KRAS G12C identified throughout structural optimization of an acryloyl amine moiety to improve in vitro inhibitory activity. From an X-ray complex structural analysis, the 1-{2,7-diazaspiro[3.5]nonan-2-yl}prop-2-en-1-one moiety binds in the switch-II pocket of KRAS G12C. Further optimization of the lead compound (5c) led to the successful identification of 1-[7-[6-chloro-8-fluoro-7-(5-methyl-1H-indazol-4-yl)-2-[(1-methylpiperidin-4-yl)amino]quinazolin-4-yl]-2,7-diazaspiro[3.5]nonan-2-yl]prop-2-en-1-one (7b), a potent compound with high metabolic stabilities in human and mouse liver microsomes. Compound 7b showed a dose-dependent antitumor effect on subcutaneous administration in an NCI-H1373 xenograft mouse model.


Assuntos
Alcanos/farmacologia , Neoplasias , Proteínas Proto-Oncogênicas p21(ras) , Animais , Proliferação de Células , Humanos , Camundongos , Mutação , Neoplasias/genética , Proteínas Proto-Oncogênicas p21(ras)/genética , Proteínas Proto-Oncogênicas p21(ras)/metabolismo , Proteínas Proto-Oncogênicas p21(ras)/farmacologia , Proteínas ras/genética , Proteínas ras/metabolismo
12.
Parasitol Int ; 89: 102589, 2022 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-35470066

RESUMO

The absence of a routine continuous in vitro cultivation method for Plasmodium vivax, an important globally distributed parasite species causing malaria in humans, has restricted investigations to field and clinical sampling. Such a method has recently been developed for the Berok strain of P. cynomolgi, a parasite of macaques that has long been used as a model for P. vivax, as these two parasites are nearly indistinguishable biologically and are genetically closely related. The availability of the P. cynomolgi Berok in routine continuous culture provides for the first time an opportunity to conduct a plethora of functional studies. However, the initial cultivation protocol proved unsuited for investigations requiring extended cultivation times, such as reverse genetics and drug resistance. Here we have addressed some of the critical obstacles to this, and we propose a set of modifications that help overcome them.


Assuntos
Malária Vivax , Malária , Parasitos , Plasmodium cynomolgi , Animais , Macaca/parasitologia , Malária/parasitologia , Malária Vivax/parasitologia , Plasmodium vivax
14.
Sci Rep ; 12(1): 5747, 2022 04 06.
Artigo em Inglês | MEDLINE | ID: mdl-35388073

RESUMO

Ungulate malaria parasites and their vectors are among the least studied when compared to other medically important species. As a result, a thorough understanding of ungulate malaria parasites, hosts, and mosquito vectors has been lacking, necessitating additional research efforts. This study aimed to identify the vector(s) of Plasmodium bubalis. A total of 187 female mosquitoes (133 Anopheles spp., 24 Culex spp., 24 Aedes spp., and 6 Mansonia spp. collected from a buffalo farm in Thailand where concurrently collected water buffalo samples were examined and we found only Anopheles spp. samples were P. bubalis positive. Molecular identification of anopheline mosquito species was conducted by sequencing of the PCR products targeting cytochrome c oxidase subunit 1 (cox1), cytochrome c oxidase subunit 2 (cox2), and internal transcribed spacer 2 (ITS2) markers. We observed 5 distinct groups of anopheline mosquitoes: Barbirostris, Hyrcanus, Ludlowae, Funestus, and Jamesii groups. The Barbirostris group (Anopheles wejchoochotei or Anopheles campestris) and the Hyrcanus group (Anopheles peditaeniatus) were positive for P. bubalis. Thus, for the first time, our study implicated these anopheline mosquito species as probable vectors of P. bubalis in Thailand.


Assuntos
Anopheles , Malária , Plasmodium , Animais , Anopheles/genética , Anopheles/parasitologia , Complexo IV da Cadeia de Transporte de Elétrons/genética , Feminino , Malária/parasitologia , Plasmodium/genética , Tailândia
15.
Parasitol Int ; 88: 102541, 2022 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-35051550

RESUMO

BACKGROUND: The emergence and spread of Plasmodium falciparum parasites resistant to antimalarial drugs constitutes an obstacle to malaria control and elimination. This study aimed to identify the prevalence of polymorphisms in pfk13, pfmdr1, pfdhfr, pfdhps and pfcrt genes in isolates from asymptomatic and symptomatic school-age children in Kinshasa. METHODS: Nested-PCR followed by sequencing was performed for the detection of pfk13, pfmdr1, pfdhfr, pfdhps and pfcrt polymorphisms. RESULTS: Two mutations in pfk13, C532S and Q613E were identified in the Democratic Republic of Congo for the first time. The prevalence of the drug-resistance associated mutations pfcrt K76T, pfdhps K540E and pfmdr1 N86Y was low, being 27%, 20% and 9%, respectively. CONCLUSION: We found a low prevalence of genetic markers associated with chloroquine and sulfadoxine-pyrimethamine resistance in Kinshasa. Furthermore, no mutations previously associated with resistance against artemisinin and its derivatives were observed in the pfK13 gene. These findings support the continued use of ACTs and IPTp-SP. Continuous molecular monitoring of antimalarial resistance markers is recommended.


Assuntos
Antimaláricos , Malária Falciparum , Antimaláricos/farmacologia , Antimaláricos/uso terapêutico , Criança , República Democrática do Congo/epidemiologia , Combinação de Medicamentos , Resistência a Medicamentos/genética , Marcadores Genéticos , Humanos , Malária Falciparum/parasitologia , Plasmodium falciparum , Proteínas de Protozoários/genética , Pirimetamina , Sulfadoxina/uso terapêutico
16.
Parasitol Int ; 86: 102479, 2022 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-34628068

RESUMO

Plasmodium, the causative agents of malaria, are obligate intracellular organisms. In humans, pathogenesis is caused by the blood stage parasite, which multiplies within erythrocytes, thus erythrocyte invasion is an essential developmental step. Merozoite form parasites released into the blood stream coordinately secrets a panel of proteins from the microneme secretory organelles for gliding motility, establishment of a tight junction with a target naive erythrocyte, and subsequent internalization. A protein identified in Toxoplasma gondii facilitates microneme fusion with the plasma membrane for exocytosis; namely, acylated pleckstrin homology domain-containing protein (APH). To obtain insight into the differential microneme discharge by malaria parasites, in this study we analyzed the consequences of APH deletion in the rodent malaria model, Plasmodium yoelii, using a DiCre-based inducible knockout method. We found that APH deletion resulted in a reduction in parasite asexual growth and erythrocyte invasion, with some parasites retaining the ability to invade and grow without APH. APH deletion impaired the secretion of microneme proteins, MTRAP and AMA1, and upon contact with erythrocytes the secretion of MTRAP, but not AMA1, was observed. APH-deleted merozoites were able to attach to and deform erythrocytes, consistent with the observed MTRAP secretion. Tight junctions were formed, but echinocytosis after merozoite internalization into erythrocytes was significantly reduced, consistent with the observed absence of AMA1 secretion. Together with our observation that APH largely colocalized with MTRAP, but less with AMA1, we propose that APH is directly involved in MTRAP secretion; whereas any role of APH in AMA1 secretion is indirect in Plasmodium.


Assuntos
Antígenos de Protozoários/genética , Deleção de Genes , Plasmodium yoelii/genética , Proteínas de Protozoários/genética , Acilação , Antígenos de Protozoários/metabolismo , Plasmodium yoelii/metabolismo , Proteínas de Protozoários/metabolismo
17.
Proc Natl Acad Sci U S A ; 118(48)2021 11 30.
Artigo em Inglês | MEDLINE | ID: mdl-34819379

RESUMO

Plasmodium malaria parasites are obligate intracellular protozoans that use a unique form of locomotion, termed gliding motility, to move through host tissues and invade cells. The process is substrate dependent and powered by an actomyosin motor that drives the posterior translocation of extracellular adhesins which, in turn, propel the parasite forward. Gliding motility is essential for tissue translocation in the sporozoite and ookinete stages; however, the short-lived erythrocyte-invading merozoite stage has never been observed to undergo gliding movement. Here we show Plasmodium merozoites possess the ability to undergo gliding motility in vitro and that this mechanism is likely an important precursor step for successful parasite invasion. We demonstrate that two human infective species, Plasmodium falciparum and Plasmodium knowlesi, have distinct merozoite motility profiles which may reflect distinct invasion strategies. Additionally, we develop and validate a higher throughput assay to evaluate the effects of genetic and pharmacological perturbations on both the molecular motor and the complex signaling cascade that regulates motility in merozoites. The discovery of merozoite motility provides a model to study the glideosome and adds a dimension for work aiming to develop treatments targeting the blood stage invasion pathways.


Assuntos
Eritrócitos/parasitologia , Merozoítos/fisiologia , Plasmodium falciparum/genética , Plasmodium/metabolismo , Proteínas de Protozoários/metabolismo , Esporozoítos/fisiologia , Citoesqueleto de Actina/metabolismo , Actomiosina/química , Animais , Eritrócitos/citologia , Células Endoteliais da Veia Umbilical Humana , Humanos , Concentração Inibidora 50 , Locomoção , Proteínas de Membrana/metabolismo , Transdução de Sinais
18.
Sci Rep ; 11(1): 19809, 2021 10 06.
Artigo em Inglês | MEDLINE | ID: mdl-34615917

RESUMO

Characterising the genomic variation and population dynamics of Plasmodium falciparum parasites in high transmission regions of Sub-Saharan Africa is crucial to the long-term efficacy of regional malaria elimination campaigns and eradication. Whole-genome sequencing (WGS) technologies can contribute towards understanding the epidemiology and structural variation landscape of P. falciparum populations, including those within the Lake Victoria basin, a region of intense transmission. Here we provide a baseline assessment of the genomic diversity of P. falciparum isolates in the Lake region of Kenya, which has sparse genetic data. Lake region isolates are placed within the context of African-wide populations using Illumina WGS data and population genomic analyses. Our analysis revealed that P. falciparum isolates from Lake Victoria form a cluster within the East African parasite population. These isolates also appear to have distinct ancestral origins, containing genome-wide signatures from both Central and East African lineages. Known drug resistance biomarkers were observed at similar frequencies to those of East African parasite populations, including the S160N/T mutation in the pfap2mu gene, which has been associated with delayed clearance by artemisinin-based combination therapy. Overall, our work provides a first assessment of P. falciparum genetic diversity within the Lake Victoria basin, a region targeting malaria elimination.


Assuntos
Resistência a Medicamentos/genética , Malária Falciparum/parasitologia , Plasmodium falciparum/genética , Variação Genética , Quênia , Mutação , Dinâmica Populacional
19.
Parasitol Int ; 85: 102435, 2021 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-34390881

RESUMO

Malaria remains a heavy global burden on human health, and it is important to understand the molecular and cellular biology of the parasite to find targets for drug and vaccine development. The mouse malaria model is an essential tool to characterize the function of identified molecules; however, robust technologies for targeted gene deletions are still poorly developed for the widely used rodent malaria parasite, Plasmodium yoelii. To overcome this problem, we established a DiCre-loxP inducible knockout (iKO) system in P. yoelii, which showed more than 80% excision efficacy of the target locus and more than 90% reduction of locus transcripts 24 h (one cell cycle) after RAP administration. Using this developed system, cAMP-dependent protein kinase (PKAc) was inducibly disrupted and the phenotypes of the resulting PKAc-iKO parasites were analyzed. We found that PKAc-iKO parasites showed severe growth and erythrocyte invasion defects. We also found that disruption of PKAc impaired the secretion of AMA1 in P. yoelii, in contrast to a report showing no role of PKAc in AMA1 secretion in P. falciparum. This discrepancy may be related to the difference in the timing of AMA1 distribution to the merozoite surface, which occurs just after egress for P. falciparum, but after several minutes for P. yoelii. Secretions of PyEBL, Py235, and RON2 were not affected by the disruption of PKAc in P. yoelii. PyRON2 was already secreted to the merozoite surface immediately after merozoite egress, which is inconsistent with the current model that RON2 is injected into the erythrocyte cytosol. Further investigations are required to understand the role of RON2 exposed on the merozoite surface.


Assuntos
Antígenos de Protozoários/biossíntese , Proteínas Quinases Dependentes de AMP Cíclico/genética , Proteínas de Membrana/biossíntese , Plasmodium yoelii/genética , Proteínas de Protozoários/genética , Animais , Proteínas Quinases Dependentes de AMP Cíclico/metabolismo , Feminino , Merozoítos/metabolismo , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Endogâmicos ICR , Plasmodium yoelii/enzimologia , Plasmodium yoelii/metabolismo , Proteínas de Protozoários/biossíntese , Proteínas de Protozoários/metabolismo
20.
Sci Rep ; 11(1): 14890, 2021 07 21.
Artigo em Inglês | MEDLINE | ID: mdl-34290278

RESUMO

Lipid rafts, sterol-rich and sphingolipid-rich microdomains on the plasma membrane are important in processes like cell signaling, adhesion, and protein and lipid transport. The virulence of many eukaryotic parasites is related to raft microdomains on the cell membrane. In the malaria parasite Plasmodium falciparum, glycosylphosphatidylinositol-anchored proteins, which are important for invasion and are possible targets for vaccine development, are localized in the raft. However, rafts are poorly understood. We used quick-freezing and freeze-fracture immuno-electron microscopy to examine the localization of monosialotetrahexosylganglioside (GM1) and monosialodihexosylganglioside (GM3), putative raft microdomain components in P. falciparum and infected erythrocytes. This method immobilizes molecules in situ, minimizing artifacts. GM3 was localized in the exoplasmic (EF) and cytoplasmic leaflets (PF) of the parasite and the parasitophorous vacuole (PV) membranes, but solely in the EF of the infected erythrocyte membrane, as in the case for uninfected erythrocytes. Phosphatidylinositol 4,5-bisphosphate (PtdIns(4,5)P2) was localized solely in the PF of erythrocyte, parasite, and PV membranes. This is the first time that GM3, the major component of raft microdomains, was found in the PF of a biological membrane. The unique localization of raft microdomains may be due to P. falciparum lipid metabolism and its unique biological processes, like protein transport from the parasite to infected erythrocytes.


Assuntos
Gangliosídeo G(M3)/metabolismo , Plasmodium falciparum/metabolismo , Plasmodium falciparum/patogenicidade , Citoplasma/metabolismo , Membrana Eritrocítica/metabolismo , Glicosilfosfatidilinositóis/metabolismo , Humanos , Metabolismo dos Lipídeos , Microdomínios da Membrana/metabolismo , Transporte Proteico , Virulência
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA